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Preface  

This is an adventure story, intent on going to 
curious places and engaging problems difficult 
enough to instigate new approaches to problem 
solving.  To keep things interesting, we will de-
liberately increase the risk of our adventure by 
getting ourselves into seemingly impossible sit-
uations on the assumption that the deeper the 
trouble the better the story.  We will do this by 
creating chaos as we wander fortuitously from 
one problem to the next.  Much to our surprise, 
this seemingly aimless approach will serve us 
well in that it will teach us that the main part of 
our job is to figure out that solutions to some of 
our most pressing problems already exist.  To 
enliven the story further, we will cast the prin-
cipal player – biology - as both hero and antihe-
ro by juxtaposing it, as it exists to how we think 
it exists.             

We already know what happens when we take 
biology apart, but we have absolutely no idea 
what to expect when we put it back together.  
Since this is exactly what we are about to do, 
we find ourselves face to face with one of the 
most intimidating problems imaginable – bio-
logical complexity.     

The first thing to know about complexity is that 
it comes with its own set of rules.  It considers 
many of our current rules as bubbles, well rip-
ened and ready to burst.  Success, we will dis-
cover, often requires little more than simply 
changing our perspective from upside down to 
right side up.  Acceptable can become unac-
ceptable and unacceptable acceptable.   

Since busting bubbles can have serious conse-
quences, we must proceed prudently.  To be 
fair, we agree at the outset to fix whatever we 
break.  As we work our way through several 
bubbles, the narrative will accumulate a body of 
evidence suggesting that our current approach 
to complex problem solving in biology is sadly 
amiss - largely because it relies heavily on a 
theory structure bound tightly to reductionism.              

Here is the problem.  We have a science – called 
biology – that lacks a mathematical foundation 
and can produce data so corrupted by bias and 
biological variation that the original information 
often becomes unrecognizable.  To make mat-
ters worse, we assume that we can study biolo-
gy by reducing its complexity to a simplicity, 
characterize its parts in isolation, and then use 
the resulting information to explain biology as it 
normally exists.  We dig the hole even deeper 
by assuming that our methods allow us to de-
tect biological changes, when often the best 
they can do is detect significant differences be-
tween heavily biased data sets.  Consequently, 
the data we publish all too often stand little 
chance of representing biology, as it is.  

Now, we come to the more challenging part of 
our story.  Biology exists as a mathematical 
powerhouse running systems so complex that 
they defy even our imagination.  In short, biolo-
gy uses rules and algorithms to produce and 
maintain a complexity that we call a phenotype 
(Figure P.1).   

 

Figure P.1  Biology follows a rule-based approach for 
producing, maintaining, and adapting phenotypes.  Our 
adventure becomes one of finding a mathematical route 
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from phenotype to genotype, using published data as our 
compass.    

For biology, a phenotype is an optimized ver-
sion of an intelligent, battle tested, complex 
self-adaptive system.  It represents nature at its 
best.  For us, the phenotype remains largely 
inaccessible because of our collective indiffer-
ence to biology as a complexity.  Given the in-
formation in Figure P.1, however, we now have 
a road map to this phenotype with all the ar-
rows pointing in the right directions.  To em-
brace complexity and reinvent biology as a 
quantitative science, all we have to do is dupli-
cate Figure P.1 using data from the biomedical 
literature (Figure P.2) – provided we can resolve 
the thorny issue of data access.     

 

Figure P.2  Reading a phenotype mathematically involves 
managing the destabilizing effects of our experimental 
methods and learning the rules of complexity from biolo-
gy.     

The first thing we notice after comparing these 
two figures is that our job looks even harder 
than the one belonging to biology.  By taking 

biology apart to study it, we unwittingly add 
multiple levels of complexity to an already 
complex biology.  Before we can access the 
phenotype, we have to delete the extraneous 
complexities and then figure out how to read 
biology mathematically.   

As the story unfolds, we will eventually discover 
that it takes a complexity to solve a complexity.  
Since we – as investigators - have little or no 
practical or theoretical experience in dealing 
with biological complexity, we will have to 
come up with a new theory structure for biolo-
gy, one that will guide the way.  In time, we will 
identify a parallel complexity as a major prob-
lem solver because it effectively recruits biology 
to do most of the heavy lifting for us.  A theory 
structure capable of producing these parallel 
complexities gives us the advantage of being 
able to interact with biology mathematically.  If 
we have a problem and can set it up correctly, 
biology always seems to have a solution waiting 
for us.               

Our foray into complexity seems well timed in 
that the biology community currently finds itself 
under attack from our statistical colleagues.  In 
a scathing article, Ioniades (2012) suggests that 
as few as 20% of our published papers may be 
correct, whereas Colquhoun (2014) puts it at 
30%.  These are serious people making serious 
allegations.  Moreover, a recent editorial in the 
Journal of Basic and Applied Social Psychology 
openly rejects the prevailing view that a signifi-
cant difference in biology can be set at the 95% 
(P0.05) level.  In fact, the journal no longer 
accepts papers unless they reach a significance 
level of 99% (P0.01).  If we applied such a rig-
orous standard to our biomedical literature, 
many of our published research papers would 
effectively disappear.   

But, why are statisticians so unhappy with us?  
When we collect data from biology, two major 
factors come into play – bias and biological var-
iation.  Such factors conspire to reduce both the 
reliability (precision) and validity (accuracy) of 
our data.  This means that we often end up with 
noisy data capable of detecting mainly large 
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changes.  Instead, statisticians want quiet, re-
producible data capable of detecting small 
changes.  This takes us to a largely unappreciat-
ed, but relevant point.  Both bias and biological 
variation derive – at least in part – from reduc-
tionist theory and from the preferences of stat-
isticians.     

Although biology allows variation, it allows far 
less than what statisticians would lead us to 
believe.  The isolated data favored by statisti-
cians tend to maximize variation, whereas the 
connected data of biology does quite the oppo-
site.  Moreover, biology is entirely capable of 
supplying us with valid data, which, in turn, we 
can use to minimize the effects of the biases we 
create with our methods.  In other words, if we 
want to, we can produce much quieter data.       

Quiet data interest us here because they show 
the patterns, equations, rules, and algorithms 
biology uses to run its business.  Since biology is 
in the business of optimizing outcomes in com-
plex systems, access to quiet data gives us ac-
cess to a wealth of proprietary information.  As 
the story unfolds, we will learn to use such 
privileged information to our mutual advantage. 

A few, brief examples will help to show where 
this story is going.  First, however, we need to 
plant our feet on solid ground.  Although most 
experts in academic and corporate circles iden-
tify biology as a descriptive science, complexity 
theory takes a decidedly different view.  It pre-
fers reality to convenience.  Biology is a descrip-
tive science now becomes biology is a quantita-
tive science.  By changing the definition, com-
plexity theory compels all parts of our story to 
obey the mathematical rules of biology – even 
when we have no idea what they might be.  
Given this new reality, part of our mandate be-
comes one of finding and bursting the many 
bubbles created by the assumptions of a de-
scriptive science.  The example to follow shows 
how easy it is to get ourselves into deep trouble 
by bursting a bubble fundamental to experi-
mental biology as it currently exists.     

Most of us would agree that the primary goal of 
scientific studies is to detect changes and to 
explain why they occur.  However, reporting 
changes in biology nourishes an enormous bub-
ble.  Why?  Many laboratories and clinics collect 
data as concentrations, which, in turn, they use 
directly to look for biological changes.  Recall 
that a concentration (A/B) includes two values, 
a numerator (A) and denominator (B).  Drawing 
from our training in chemistry, we know that A 
can change, but B will remain constant because 
it represents a standard unit of volume that 
conveniently cancels out when the change is 
calculated.  This gives us one value for the con-
trol (At0) and another for the experimental (At1) 
- everything appears to be in perfectly good or-
der ( = At1/At0).  Here change () works. 

When it comes to comparing concentrations, 
however, chemistry has one set of rules and 
biology another.  In an experimental setting, we 
can expect chemistry to have two variables in 
play (( = At1/At0), but biology with its added 
load of complexity will have four: ( = (A t1/Bt1) / 
(At0/Bt0) because Bt0 ≠ Bt1.  In a biological setting, 
comparing concentrations produces uninter-
pretable results on a vast scale.  Since most 
photometric measurements (i.e., optical densi-
ties) qualify as concentrations (Bolender, 2007, 
2007A), even biochemistry contributes hand-
somely to the bubble when its data are related 
to a biological reference.  This self-induced cha-
os is one of the enduring legacies of our de-
scriptive science.  Compelling evidence for the 
existence of too many variables in play appears 
throughout the literature as disagreements, 
inconsistencies, and irreproducible results.   

In short, there are reasons for concern.  As a 
complex and highly adaptive organism, we can 
adjust to even the harshest of research envi-
ronments.  Unfortunately, we may be reaching 
the limits of our endurance.  A well-trained in-
vestigator with years of experience in the bio-
logical sciences is likely to produce a list of real-
world hazards similar to the one given below.  
Our purpose here in preparing such a list is to 
assure the reader that all the items included 
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therein belong largely to the same problem.  
Moreover, the list serves as a convenient score 
card for the game we are about to play.  The 
solution, as the book will explain, requires little 
more than sliding biology from one theory 
structure onto another – from reductionism to 
complexity.  The list highlights the realities of 
our working conditions.                                

1. Acceptance of a descriptive science 

2. Acceptance of a methods-driven science 

3. Acceptance of faulty assumptions 

4. Uncontrolled experimental bias 

5. Uncontrolled biological variation 

6. Uncontrolled false positives and negatives 

7. Uncontrolled ambiguity 

8. Inadequate theory structure 

9. Inadequate research model 

10. Inadequate publication model for research data  

11. Inability to reproduce results routinely 

12. Inability to detect biological changes reliably 

13. Inability to quantify phenotypes exhaustively 

14. Inability to deal effectively with biological complexity 

15. Inability to correct methodological distortions 

16. Inability to access biological information 

17. Absence of first principles 

18. Absence of data connectivity 

19. Absence of objective diagnosis and prediction 

20. Absence of mathematical markers 

21. Absence of a universal database for published data 

22. Absence of a common language shared with biology 

23. Absence of published data compatible with biology 

A word of caution is in order.  This book is a 
hard read.  The mere concept of biological 
complexity is still so far beyond our comprehen-
sion that most reasonable people avoid it alto-
gether.  To make matters worse, biology is only 
one part of a much larger problem.  All of our 
methods for collecting and interpreting data 
contribute yet another level of complexity to 
that of biology.  This means that gaining access 
to the core principles of living systems requires 
the unfolding of two interacting complexities - 
simultaneously (Figure P.2).  Since this opera-
tion involves a monumentally tedious array of 

details and arcane arguments, we will accede to 
treating complexity as a simple game that we 
can learn to play with biology – one move at a 
time.    

Acknowledgments 

The idea of approaching biology as a complexity 
came from a month long workshop held in San-
ta Fe, NM (1987) under the auspices of the San-
ta Fe Institute.  It occurred in response to a rec-
ommendation of the National Research Council 
(1985).  Our group was charged with the task of 
figuring out how to organize all the published 
data of biology in such a way as to reveal gen-
eralizations, connections, and new theory struc-
tures.  The effort resulted in a strategic plan 
accompanied by a list of recommendations 
(Morowitz and Smith, 1987).   

In turn, the insights and enthusiasm generated 
by this workshop led first to a pilot study 
(Bolender and Bluhm, 1992) and then to a grant 
from the National Science Foundation (NSF).  
The goal of the NSF grant was to organize the 
published data of biological stereology within 
the framework of a relational database.  This 
grant along with helpful suggestions from the 
NSF provided the foundation for the on going 
Enterprise Biology Software Project (2001-
Present).  The book summarizes the yearly re-
ports of this project - all of which are currently 
available online (enterprisebiology.com).   

In large part, the success of this project derives 
from the generosity of the stereology communi-
ty in supplying reprints for the stereology litera-
ture database and to the Internet Brain Volume 
Database (Kennedy, et al., 2012) for providing 
online access to MRI data.  Since many of the 
keys to understanding biology as a complexity 
already exist within the biology literature, we 
will use this book to show what our published 
data are capable of unlocking.              
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Introduction 

What is a complexity game and why do we want 
to play it with biology?  Biology plays the com-
plexity game by translating its rules, proce-
dures, and outcomes - stored largely in the ge-
nome - into phenotypes that can do extraordi-
nary things.  A phenotype represents a snap-
shot of an individual at a given point in time, 
linking the past to the present and the present 
to the future.  By playing the complexity game 
with biology, we gain access to this phenotype 
along with a new strategy for interacting with 
biology.     

The Problem 

Biology operates as a complexity, wherein it 
defines and is defined by its parts and connec-
tions.  In spite of this reality, we continue to 
study biology not as a complexity, but as a con-
trived simplicity.  Our current theory structure 
operates on the assumption that we can take 
biology apart, understand the parts, and subse-
quently understand biology.  The problem with 
this approach is that it lacks an appreciation for 
the order that comes from the connectivity of 
the parts and the emergent properties arising 
therefrom.  Moreover, by exchanging reality for 
convenience we invite the penalty of unintend-
ed consequences.       

Few realize, for example, that a theory struc-
ture based on reductionism limits our ability to 
create a mathematical foundation for biology 
analogous to those basic to physics and chemis-
try.  By taking the complexity out of biology, we 
unwittingly abandon biology’s connection to 
mathematics.  This explains why biology re-
mains a descriptive science.  The underlying 
problem is one of dimensions.  Reductionism, 
which eliminates complexity by removing its 
connections, also eliminates one dimension of 
the biological information.  The remaining parts 
represent points (data) that now exist in zero-
dimensional space.  (Recall that statistical theo-
ry deals largely with the behavior of such data 

points.)  As a complexity, however, a living or-
ganism must operate in a dimensional space 
higher than zero because it must accommodate 
linear strings (patterns) consisting of parts and 
connections.  The unavoidable truth is that bi-
ology, as an experimental science, operates on 
the risky assumption that we can use isolated 
information existing in zero-dimensional space 
to explain complex events occurring in higher 
dimensions.  Abbot’s delightful book (Flatland, 
1991) offers a gentle introduction to the prob-
lem of information flow by describing what 
happens when we view the same world from 
different dimensions.                                

Since we can be reasonably confident that biol-
ogy defines and executes its functions by rule, 
our main job here will consist of assembling a 
complexity parallel to the one of biology – using 
a more inclusive theory structure.  We will dis-
cover that by restoring the complexity we can 
restore the mathematics along with many of its 
rules.  This represents an import step because a 
quantitative approach allows us to play a far 
better game with biology.  

The complexity game we are about to play must 
rank as one the most challenging.  It comes 
without instructions and the user gets to de-
termine the length of the game, the level of dif-
ficulty, and the size of the prize.  When playing 
the complexity game with biology, however, it 
is up to the player - or players – to discover the 
rules and then figure out how to make the right 
moves on the right playing field.  Experienced 
players have the distinct advantage of knowing 
that teaming up with biology all but guarantees 
a win.  Biology already knows all of the rules, 
moves, and playing fields and seems perfectly 
willing to share this knowledge with us.   

Theory Structure 

The book introduces the reader to complexity 
by playing six games in order of increasing diffi-
culty.  Theory structure plays an important role 
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in that it guides the tasks of constructing the 
playing fields and figuring out to play a given 
game.   

Figure 0.1 indicates that reductionist theory 
directs the first game, whereas the remaining 
games work together to assemble and test a 
new theory structure based on complexity.  No-
tice in the figure that the first two games rely 
exclusively on the post-mortem data of biologi-
cal stereology, whereas the remaining four use 
data collected with MRI from living subjects.  
This distinction is important because we will 
discover that a sharp line exists between these 
two data sources.     

Two remarkable things will happen as we make 
the transition from the simplicity of reduction-
ism to the complexity of biology.  We will de-
velop an unexpected confidence and skill in de-
signing games of increasing complexity and, at 
the same time, take comfort from the discovery 
that the harder the game, the easier the solu-
tion.  Lest we forget, however, our story begins 
at the point where have absolutely no idea 
about how to study biology as a complexity or 
even if it is possible.       

 

Figure 0.1 Playing the complexity game with biology.  
Notice that the games, which begin with stereological 
data derived from post-mortem samples, quickly pro-
gress to MRI data derived from living individuals.  Each 
playing field consists of one or more relational databases.    

Playing a complexity game requires meticulous 
attention to detail and a steely determination 
to recognize reality and play accordingly.  Start-
ing a complexity game with biology, however, 
can be a somewhat unnerving experience be-
cause all such games must begin in the altered 
reality created by reductionism.   

Everyone knows that modern investigative biol-
ogy plays largely by the rules of reductionism.  
This theory structure reduces the complexity of 
a living organism into a subset of isolated parts, 
but, at the same time, its methods quietly in-
troduce artificial properties.  Parts prepared for 
a stereological analysis, for example, may expe-
rience as many as thirty-three operations that 
can distort reality (Bolender, 2003) – along with 
the post-mortem consequences of going from 
living to lifeless.  In spite of convincing evidence 
to the contrary, most biologists still consider 
reductionist data a valid representation of biol-
ogy.  This assumption, perhaps more than any 
other, deprives biology from enjoying the many 
advantages intrinsic to sciences based on first 
principles.  Put simply, reductionist data will 
continue to make important contributions, but 
they will be largely ineffective in dealing with a 
host of pressing problems swirling around the 
real world of biological complexity.      

Complexity theory takes its rules from biology 
as it normally exists and as it exists for us.  Con-
sequently, we will be dealing with two interact-
ing complexities, one coming from biology and 
the other from the distortions we create by col-
lecting data.  Until the game advances to the 
point where these two complexities become 
separable, we will be playing with a handicap.  
The best we can do in the early games is to min-
imize the distortions and focus our attention on 
finding patterns in data collected with stereo-
logical methods.  Such data are essential be-
cause they allow us to quantify biological parts 
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of all sizes and shapes in terms of volumes, sur-
faces, lengths and numbers.  Moreover, mor-
phological data represent the basic building 
blocks of a phenotype. 

Games 

A complexity game proceeds from one playing 
field to another by making moves that define 
the properties of the subsequent playing field.  
In its turn, each playing field supplies new forms 
of information with new data formats and pat-
terns.  Since patterns reflect underlying rules, 
they usually offer the best clues for figuring out 
what biology is doing.   

In the text, a move begins with a question high-
lighted in blue and concludes with a color-
coded answer - a green text box signals a win, 
red a loss.  The intervening text includes the 
strategy behind the move and supplies the 
methods, results, and interpretations.  If, as the 
game proceeds, you become lost or miss the 
point of an argument, you can always go back 
to the original papers, reports, guides, or soft-
ware packages for help.  (Note: Some of this 
information is available online at enterprisebi-
ology.com)  Many of the details related to the 
stereological methods of data collection and 
manipulation lie well beyond the scope of this 
book and can be found elsewhere (e.g., Weibel, 
1979; Gundersen et al., 1988; Cruz-Orive and 
Weibel, 1990; Bolender et al., 1995; West, 
2012). 

Background 

The central strategy of the project consists of 
extracting data from the biology literature and 
then using them to discover how biology oper-
ates mathematically.  Since biological complexi-
ty resides in the volumes (V), surfaces (S), 
lengths (L), and numbers (N) of its parts and in 
their connections, stereology becomes the 
method of choice because it can estimate these 
parameters with unbiased sampling methods.  
In effect, stereology is ideally suited to the task 
of dealing with biological complexity – at all 

levels – in both living and nonliving subjects.  
Moreover, it allows us to access the phenotype 
as a set of nested complexities existing in n-
dimensional space.      

Before the games can begin, however, we have 
to redefine our relationship to the biology liter-
ature.  By entering stereological data into a re-
lational database, they begin to loose their im-
posed isolation by becoming part of a large and 
coherent data set.  The advantage of this new 
arrangement is that it allows us to look for local 
and global patterns in published data.  Often, 
but not always, local will refer to the data of a 
single paper, group or individual, whereas glob-
al identifies data coming from many different 
papers, groups, or individuals.    

Complexity consists of patterns that display 
mathematical properties.  These patterns will 
first appear as absolute data (V, S, L, N) fitted to 
regression lines with coefficients of determina-
tion (R2) equal to 0.9 or better (recall that as the 
R2 approaches 1.0, data points distribute either 
on or close to their regression line).  R2s close to 
one tell us that the relationship of one part to 
another suggests a mathematically defined or-
der.   

Whenever we collect data from biology, how-
ever, our methods invariably introduce uncer-
tainty.  Recall that stereological estimates carry 
an unknown burden of biases related to the 
preparation and analysis of biological samples – 
particularly when taken post-mortem.  Alt-
hough we can be confident that the design-
based methods of stereology guarantee unbi-
ased estimates derived from both living and 
nonliving sources, we can also guarantee that 
different sources – living and nonliving - can 
give different estimates for the same parts – 
depending on the distortions (biases) we intro-
duce experimentally.     

We will discover that one way of mitigating the-
se experimentally induced artifacts is to form 
data ratios that can minimize the effects of the 
distortions.  This strategy also makes sense 
mathematically because the data show that bi-
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ology exerts a greater level of control on the 
ratio of its parts than on their absolute values.  
Adults of different sizes, for example, frequently 
display the same parts with different volumes, 
but similar ratios.  From this, it follows that ab-
solute values can be expected to exhibit more 
biological variation than when expressed as ra-
tios.  In short, forming ratios effectively mini-
mizes distortions in our data produced by ex-
perimental methods and biological variation.     

Notice that by replacing absolute values with 
ratios, we are following a deliberate strategy 
designed to take our cues directly from biology.  
We will discover that the rewards of such an 
approach can be considerable.  By deferring to 
biology, it will do most of the hard work re-
quired to get us to our initial goal of construct-
ing a parallel complexity – our proxy for biology 
as it actually exists.    

For convenience, we will begin by defining the 
ratio of parts as a data pair (AX:BY) wherein two 
named parts (A, B) are connected numerically 
by the ratio (X:Y).  (Note: dividing Y by X sets X = 
1.)  By reconfiguring the stereology literature 
database as data pairs, we obtain a universal 
biology database, wherein all the published da-
ta share exactly the same format.  Operational-
ly, this relationship of part (A, B) to connection 
(X:Y) defines a unit (i.e., an element) of biologi-
cal complexity, one with universal connectivity.  
Given this more convenient data type, we will 
be able to find quantitative patterns practically 
everywhere we look.         

Of course, searching for patterns in data aggre-
gated from thousands of papers becomes a 
challenging and very time consuming task be-
cause the ratios (X:Y) supply continuous (i.e., 
analogue) values.  This limitation will be easily 
overcome by assigning each data pair ratio to a 
decimal step (or bin) and then fitting these rati-
os to a regression equation (Y=bXa), wherein the 
values of the exponent a and the coefficient of 
determination (R2) both approach one.  With 
such an arrangement, the power equations 
(Y=bXa) approach linearity (Y=bX) and predict 
the original values with a maximum error not 

greater than ±15%.  In effect, this reduces the 
stereology literature database to roughly 100 
equations, wherein every data point defines 
and is defined by an equation.      

These new decimal bins not only speed the task 
finding local and global patterns, but they also 
play a pivotal role in assembling the playing 
fields for our complexity games.  Moreover, 
chaos theory provides some added cover.  By 
shifting our data from an analog (continuous) to 
a digital (stepped) platform, we move them 
slightly away from their original order and to-
ward the edge of chaos where they become 
infinitely more interesting and informative.     

Notice the strategy in play.  By translating the 
isolated data of individual papers into a large 
digital literature consisting of standardized data 
ratios and equations, our data can detect quan-
titative patterns and generate data sets large 
enough to qualify as a parallel complexity.  By 
using these ratios to assemble playing fields of 
increasing complexity (X:Y X:Y:Z X:Y:Z…N), 
we can begin to attack difficult problems with 
surprising ease.  Keeping everything on a math-
ematical footing keeps biology in the loop and 
allows us to benefit handsomely from our vast 
investments in basic and clinical research.   

Several examples will serve to illustrate how 
data ratios provide a wealth of new information 
about the mathematical underpinnings of biol-
ogy.  Of special interest is the finding that bio-
logical parts and connections display valences 
and stoichiometries analogous to those found in 
chemistry.  Biology uses the same strategy seen 
for elements and molecules by allowing the 
same two parts to form different ratios.  This 
flexibility greatly increases the number of pos-
sible outcomes - including emergent properties.  
By increasing its potential for variation and 
adaptability, biology presumably improves its 
chances for success and survival.  The same ap-
plies to us.  By becoming privy to a strategy of 
such fundamental importance to biology, we 
find ourselves in a much stronger position to 
ask probing questions about how we currently 
collect and interpret our data.  If biology want-
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ed to give us a friendly nudge in the right direc-
tion, revealing its use of ratios and valences 
would be a clever way of doing it.   

As the chapters unfold, we will discover how a 
given theory structure in biology comes with its 
own set of rules - often producing dramatically 
different results.  Change in biology, for exam-
ple, represents an enormously complex event, 
wherein a given part influences and is influ-
enced by a large number of other parts and 
connections.  In contrast, identifying a change in 
a single, isolated part ignores - almost entirely - 
the true nature of change in biology.  Moreover, 
isolated data rarely contain enough information 
to get to the right answer.  By looking at such 
truncated data through the lens of complexity 
theory, we can begin to understand why theory 
structure plays such an important role in the 
discovery process.    

All games seem to involve an element of luck, 
and our complexity games are no exception.  A 
chance encounter with an Internet database 
containing MRI data from human brains proved 
to be the game changer.  It allows us to make 
key connections between theory structures (re-
ductionism to complexity) and parallel complex-
ities (living to nonliving).  Moreover, by convert-
ing MRI data into mathematical markers, we 
can produce playing fields capable of diagnosing 
disorders of the brain objectively and begin to 
understand the role that quantitative relation-
ships play in the disease process.  

We will also discover that the brain uses many 
of the same parts and connections – acting as 
modules – to assemble a wide range of differ-
ent disorders.  Once again, we find biology re-
configuring itself to create new emergent prop-
erties – a theme repeating relentlessly at all 
levels of size.  The big surprise is that these 
markers reveal a level of complexity so enor-
mous that even the big data technologies of 
today may not be up to the task of explaining 
how these disorders appear and develop.  Of 
one thing, however, we can be certain.  The op-
portunities created by mathematical markers 
for triggering advances in our understanding of 

biology are likely to surpass even our most op-
timistic predictions.        

There is more.  The MRI database of living 
brains can do something that the stereology 
database of post-mortem brains cannot.  Only 
living brains are capable of displaying – routine-
ly - identical patterns both locally and globally.  
We will use this remarkable property as an acid 
test for determining the validity of biological 
data. 

Consider what this test will tell us.  When we try 
to diagnose disorders in post-mortem brains 
using mathematical markers derived from their 
living counterparts, we will be disappointed 
consistently.  This results from the fact that ex-
actly the same parts in living and nonliving 
brains display different ratios and consequently 
different markers.  We will use this inconsisten-
cy as an opportunity to identify and remove the 
distortions that exist in stereological data when 
they come from nonliving sources.         

Challenges 

Biology as a science faces a major challenge go-
ing forward in that it owns the responsibility of 
unraveling the complex relationships of genes 
to phenotypes.  This means that stereology - 
with its extraordinary ability to quantify struc-
ture - becomes a critical player in working out 
the complexity of phenotypes because it can 
provide estimates for parts and connections of 
all sizes – seamlessly throughout the biological 
hierarchy.  The immediate challenge for the ste-
reology community becomes one of demon-
strating – not just assuming – that equivalence 
exists between data sets derived from living and 
non-living sources.   

Story 

This book summarizes fifteen yearly reports 
(2001-2015) of the Enterprise Biology Software 
Project (Figure 0.2).  Since these reports assume 
a working knowledge of biological stereology, 
readers unfamiliar with this method may miss 
some of the subtleties surrounding the forth-
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coming games, moves, and interpretations.  
Consequently, care will be taken to explain 
what is going on behind the scenes.   

 

Figure 0.2 The Enterprise Biology Software Project ex-
plores the relationship of biology to theory structure to 
outcomes.  It currently provides mathematical access to 
the phenotype and perhaps in time to the genome.   

Before plunging into a seemingly endless pa-
rade of figures and arcane details, it may be 
helpful to begin with a brief summary of the 
complexity games and their outcomes.  This 
offers the reader a quick overview of what to 
expect. 

Perceptions 

Our move into a theory structure based on bio-
logical complexity will introduce a number of 
fundamental changes in the way we think and 
operate.  The following list offers a preview of 
these coming events.   

1. Patterns replace individual data points as 
the primary source of biological infor-
mation. 

2. The biology literature – expressed as a uni-
versal biology database - becomes a single, 
global experiment to which each new publi-

cation contributes its data.  In effect, the 
literature becomes the phenotype. 

3. Data interpretation requires an active col-
laboration with large scale databases de-
rived from the biology literature.  

4. Experiments involve large numbers of con-
nected patterns (105107… 10n) rather 
than small numbers of isolated data points 
(10 102). 

5. Change in biology is such a complex event 
that its interpretation requires collabora-
tion on a massive scale. 

6. Valences serve to define structural patterns 
in health and disease.  

7. Data of the basic and clinical sciences inter-
act seamlessly within in the framework of 
universal biology databases. 

8. Decision-making derives from the collective 
knowledge contained within universal biol-
ogy databases.    

9. Playing fields define the games and their 
outcomes. 

10. Gold standards for biological information 
come from living systems. 

11. Parallel complexities operate on rules and 
algorithms consistent with the mathemati-
cal core of living systems. 

12. Interpreting experimental outcomes typical-
ly involves the management of multiple 
complexities simultaneously.   

13. Data from nonliving sources cannot be ex-
pected - a priori - to duplicate those of liv-
ing ones.  

14. The human brain in health and disease ad-
heres to a modular design.  

15. Theory structure influences experimental 
bias and biological variation.   

16. The theories of reductionism and complexi-
ty combine to form a theory structure ca-
pable of supporting the biology enterprise.  

Our current mindset in science revolves around 
the concept of variables (x, y), which relate to 
one to the other by some function (f(x) = y).  In 
contrast, biology seems to prefer patterns ex-
pressed as numerical ratios, which it uses to 
generate complexities and emergent proper-
ties.  Consequently, we will explore the ratio-
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based patterns of biology with stochiometries, 
valences, Fibonacci series, harmonies, design 
codes, polynomials, mathematical markers, 
modules, graphs, and cluster analyses.   

Bigger Picture 

We - as a scientific community - live in a world 
constructed as a simplicity, wherein our biologi-
cal information consists largely of disconnected 
elements.  Biology, on the other hand, lives in a 
complex world wherein these same elements 
exist in a highly connected state.  Although we 
often recognize this inconsistency, we seem 
perfectly willing to accept the ways things are.  
This, of course, imposes limits on what we can 
do.              

By playing the complexity game, we address 
two compelling questions.  How do we go from 
state A (simplicity) to state B (complexity) with 
a minimum amount of discomfort and is making 
such a trip really worth the effort?  In attempt-
ing to answer these questions, we will be put-
ting ourselves in a curious position.  We will 
have to decide if we are going from fantasy (A) 
to reality (B) or just from one fantasy to anoth-
er.  Making such a distinction will require a new 
type of information, one produced by combin-
ing the data and expertise of thousands of our 
best scientists into constructs capable of ad-
dressing real world problems.  In effect, we will 
have to follow the data to wherever they lead.                

Fortunately, the games, which are driven by 
data and often risky moves, will flush out more 
than a few startling surprises along the way.  
Biology - as a neutral referee with impeccable 
credentials – will serve as the presiding judge.  
Such an arrangement requires that we take a 
first principles approach, one that puts every-
thing to the test by biology and by anyone else 
willing to try.   

The deep understanding to come from this ex-
ercise results in a paradox.  Complexity turns 
out to be far simpler than simplicity – because 
complexity runs on a mathematical platform, 

whereas simplicity does not.  If we are prepared 
to listen, this is what biology is about to tell us.   

Language 

For a science to work properly, it must include a 
two-way communication system capable of ex-
changing information between the parties in-
volved.  In physics and chemistry, such a system 
exists.  We use first principles embedded in a 
theory structure to interact mathematically 
with the physical world.  Although the science 
of biology uses a similar theory structure (re-
ductionism), it largely lacks first principles, does 
not speak mathematics, and ignores complexity.  
By failing to interact mathematically with the 
natural world, we create a language barrier that 
prevents us from advancing beyond the level of 
a descriptive (soft) science.     

If, as suggested by Adami (2015), we can define 
life as information stored in a symbolic lan-
guage, then our story about biological complex-
ity also becomes a story about language.  By 
following the data, we will find that phenotypes 
can in fact be translated into a symbolic lan-
guage consisting of pieces of information (one-
dimensional strings) that connect in n-
dimensional space, where n  1.  Using data-
bases populated with strings numbering in the 
millions, we will discover – much to our delight 
– that we can communicate with biology objec-
tively.  When we pose a question quantitatively, 
biology politely responds with an answer.       

The strings of our symbolic language, which in-
clude alpha names and numeric ratios, identify 
patterns that relate our descriptive names for 
biological parts to the quantitative properties 
given to them by biology.  Since biology uses 
quantitative rules to form patterns, we will do 
the same.  By allowing our strings to grow from 
characters (mathematical markers) to words to 
sentences to stories, we will be duplicating the 
syntax of biology.  In turn, these linguistic 
strings give us a theory structure based on 
complexity, detect first principles, speak math-
ematics, and allow us to set up and solve deli-
ciously difficult problems. 
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Chapter 1  

Game 1 – Reconnecting Data 

The first game takes its inspiration from a 
month long think tank held under the auspices 
of the Santa Fe Institute, which is summarized 
in a report by Morowitz and Smith (1987).  The 
charge given to the more than fifty participants 
was to figure out how to organize all of the data 
of biology, thereby encouraging new connec-
tions, theory structures, and discoveries. 

Complexity, as we all know, consists of many 
parts and connections with local, global, and 
emergent properties – all subject to rules.  If we 
approach biological data as a complexity, then it 
follows that all the many parts and connections 
must be quantitative and hierarchical.  The only 
biological method capable of delivering such a 
wide-ranging data set is stereology.  Recall that 
this approach uses design-based sampling to 
estimate the volumes, surfaces, lengths, and 
numbers of biological parts of all sizes.  Herein 
we find the argument for designing, populating, 
and testing a biology literature database popu-
lated with stereological data.  

The first game sets out to reconnect the isolat-
ed data of the stereology literature, first by 
storing them in the same place and then by al-
lowing them to interact.  Note that each game 
begins with a goal followed by several moves 
intended to achieve it.       

Move 1: Can we organize biological data 
within the framework of a relational data-
base?   

The purpose of the move was to take data from 
highly heterogeneous sources (research publi-
cations) and standardize them.  A primary re-
quirement was a database model capable of 
accommodating a majority of biological data – 
including both structure and function.   

 

This required access to thousands of reprints, 
many of which were generously supplied by 
members the stereology community.  The En-
terprise Biology Software Project was set up as 
a vehicle for developing new technologies and 
returning them along with a yearly report to 
contributing authors.  Currently, the project 
supports investigators working in more than 
forty-five countries.   

1-1 Relational Database 

The relational database model includes a struc-
tural hierarchy consisting of sixteen compart-
ments (hard-coded), twelve structural data 
types (hard-coded), and three functional data 
types (user-defined).  It also includes tables for 
authors, citations, and methods (Figure 1.1).  
Notice that the database model uses two struc-
tural hierarchies – one for control data (co) and 
the other for experimental (ex) - connected to 
one another and to either a control or experi-
mental data table. 


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Figure 1.1 The logical database model for the biology 
literature includes a collection of entities (boxes) and 
relationships (lines), as defined by rules of relational da-
tabases (From Bolender, 2001A). 

In turn, the logical model of Figure 1.1 becomes 
a physical model (Figure 1.2), wherein entities 
include the columns of database tables and re-
lationships the joins between the tables.  The 
user interacts with the database through data 
entry forms, browsers, simulators, and query 
screens. 

 

Figure 1.2 The data entry process consists of assembling a 
hierarchy of parts (entities) by moving from one tab to 
the next (left) and then assigning numerical values to the 
parts (right) (From Bolender, 2001A).   

 

1-2 Entering Data   

Data entry consists of first building a structural 
hierarchy for each data point and then mapping 
numerical data to it.  Data expressed as vol-
umes, surfaces, lengths, and numbers can be 
related to a unit of volume (concentration or 
density), to a structure, or to an average struc-
ture.  Data entry includes extracting data from 
publications (Figure 1.3), standardizing data 
(Figure 1.4), and harmonizing units (Figure 1.5). 

 

Figure 1.3 A surprisingly large number of publications 
report data exclusively as graphics.  This work screen 
simplifies the task of translating graphical data back into 
numerical values (From Bolender, 2001A). 

 

Figure 1.4 The task of standardizing data entry to a com-
mon set of terms and hierarchical locations requires a 
familiarity with the literature that comes only after en-
tering data from thousands of papers.  The result is a 
data entry format and nomenclature preferred by a ma-
jority of authors.  The green screen serves as the tem-
plate for data entry (From Bolender, 2001A). Terms and 
definitions appear at the right.    
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Figure 1.5 The units screen simplifies the task of convert-
ing from one unit to another (From Bolender, 2001A). 

1-3 Data Catalogues 

The logical database model of figure 1.1 uses 
the hierarchical relationships of biological data 
to map location to exposure.  By organizing the 
literature into a single system of connected da-
ta, the model allows us to transform the data 
set into new formats or catalogues – as the 
need arises.  For example, Figure 1.6 illustrates 
that we can view the literature one paper at a 
time (top), hierarchically as individual tables 
(middle), or as total data tables (bottom).  More 
importantly, relational databases completely 
change our relationship to published data.  In-
stead of remaining static, data become dynamic 
and capable of creating new forms of infor-
mation.     

 

Figure 1.6 When stored in a relational database, the biol-
ogy literature becomes a catalogue of data that can be 
expressed in a variety of configurations (From Bolender, 
2001A).    
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1-4 Reductionist Theory 

Collecting and interpreting data fall within the 
purview of a theory structure, which for our 
purposes in this chapter follows the rules of 
reductionism.  Reductionist theory holds that a 
complex system equals the sum of its parts.  
When applied to biology, it reduces complexity 
to simple terms by isolating and studying the 
properties of individual parts.   

1-5 Playing Fields 

The stereology literature database serves as our 
first playing field.  It represents - in digital form - 
data coming from thousands of refereed publi-
cations selected with regard to the methods 
and to the perceived ability of the data to de-
tect biological changes (Bolender, 2001a, 2007).  
Since we now have a playing field, we can make 
our first move with the database.  Recall that a 
move, which takes the form of a question, oc-
curs on the playing field according to the rules 
of the theory structure in play.  In a reductionist 
setting, we know that both concentrations and 
absolute values are used routinely to detect 
biological changes, but we know little about the 
consequences of obeying this rule.  Move 2 puts 
the question.   

Move 2: Do both concentrations and abso-
lute values detect biological changes simi-
larly?   

Reductionist theory assures us that we can de-
tect a change in a given part independent of 
biological complexity.  Were this true, we would 
expect to find wide spread agreement of exper-
imental results across the biology literature.  In 
fact, quite the opposite occurs.  The literature 
overflows with conflicting results and all too 
often studies cannot be repeated.  Since a bio-
logical change represents a complex event, 
many variables will be in play that can influence 
the outcome, which includes the unintended 
consequences of our experimental methods.  
Move 2 identifies a bubble (concentration) and 
estimates its cost to the community.            

1-6 Concentrations 

Try this.  Pick up a recent weekly journal and 
thumb through the biology articles.  You may 
discover that most of those studying biological 
parts will report changes by comparing concen-
trations, often expressed as some version of an 
optical density.  Under reductionism, this meth-
od of detecting biological changes is perfectly 
acceptable.  We can check on the appropriate-
ness of this practice by viewing the same 
changes with and without complexity.         

If both concentrations and absolute values al-
low us to detect changes, do they detect the 
same changes?  If yes, then the results of one 
should equal the results of the other.  Stated 
mathematically, the question becomes: 

                   ( )

                   ( )
 
              ( )

              ( )
    (1.1) 

where C equals control and E experimental. 

 

Since the stereology literature database offers 
ready access to both concentrations and abso-
lute values from the same papers, the playing 
field (stereology database) answers the ques-
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tion.  By simply clicking on command buttons 
attached to the user interface shown in Figure 
1.7, we can compare changes in the concentra-
tions of parts to those of absolute values.   



Figure 1.7 Concentrations and absolute values detect the 
same biological changes only about 50% of the time.  
Highlights identify the change: red = increase, blue = de-
crease, and green = no change.  When – in the same row - 
the same highlight color appears on both the concentra-
tion and absolute values, they both detect the same 
change – otherwise not (From Bolender, 2001A).     

On average, the two estimates – concentrations 
and absolute values - agree only about 50% of 
the time.  This discrepancy begins to explain the 
risk involved in simplifying biology by throwing 
away its complexity. The problem, however, 
goes much deeper.  Notice that the concentra-
tion trap identifies an ambiguity, but only be-
gins to resolve it.  Since estimating absolute 
values makes more sense mathematically, we 
now use them widely to detect biological 
changes – assuming than any remaining ambi-
guity is unimportant.  Of course, such an as-
sumption can be dangerous, as we will discover 
later in our story.  More importantly, however, 
the persistence of ambiguity in our research 
data signals an inability of our methods to man-
age risk effectively.                

Bubbles invariably develop from faulty assump-
tions.  When looking for a change by comparing 
concentrations, for example, we must assume 
that the denominator of the concentration data 

- typically a cubic unit of reference volume - 
contains the parts of interest from exactly the 
same number of cells.  When not the case, a 
change the number of cells contained within 
the cubic unit of reference can influence the 
result or produce a change entirely by itself.  
Since cells routinely change their shapes and 
volumes in response to experimental exposures 
and the methods of preparation, comparing 
concentrations represents a high-risk approach 
to detecting biological change.  From a mathe-
matical standpoint, comparing concentrations 
in a biological setting involves the behavior of 
four variables not the widely assumed two.  

This concentration problem is widespread, par-
ticularly in the literatures of biochemistry, cyto-
chemistry, and stereology.  Recall that optical 
densities represent concentrations and are the 
most common form of information used to de-
tect biochemical changes.  Although the many 
pitfalls associated with concentrations can be 
identified (Bolender, 2007A), running simula-
tions  can be helpful when trying to understand 
the fine points of the problem. 

The Counting Molecules program (Bolender, 
2005) simulates a wide range of experiments 
routinely encountered in biochemistry and ste-
reology (Figures 1.7 and 1.8).  By expressing a 
biological change in terms of a set of intercon-
nected variables, one can quickly discover the 
importance of connectivity when looking for 
changes in biological parts.  Figure 1.8 shows 
that the same experiment can give different 
results when run with and without complexity. 
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Figure 1.8 Detecting changes in molecules by comparing 
concentrations (i.e., optical densities) carries a risk.  The 
top panel shows that the concentration of molecules – 
expressed as a numerical density (Nv) – is the same 
(100%) for both groups at the beginning of the experi-
ment (1,000,000/cm

3
).  After running the experiment, the 

middle panel shows a decrease in the number of mole-
cules from the control value of 100% to 83%.  By demon-
strating a significant difference, most investigators would 
conclude that the experimental exposure effectively di-
minished this population of molecules.  Most studies end 
here.  The bottom panel tells a different story with the 
same data.  It shows that the exposure caused the cells to 
swell slightly which meant that it took fewer of them to 
fill a cm

3
.  Fewer cells meant fewer molecules.  In fact, 

the absolute number of molecules remained unchanged.  
Isolated variables (top and middle panel) deprive the 
investigator of the critical information needed to inter-
pret the data correctly (From Bolender, 2005).    

1-7 Absolute Values 

When reporting experimental outcomes, 
switching from concentrations to absolute val-
ues improves the outcome by removing a major 
source of ambiguity.  To do this, we multiply a 
concentration (N/V) by an absolute volume (V).  
The stereological equation for this operation is 
given as: 

                                  ,   (1.2) 

where                        

Note that equation (1.2) requires that the con-
tents of a cm3 of the absolute volume (Vpart) are 
identical to the cm3 of the concentration (Vpart).  
If not, then the two cm3 will not cancel out – 
apples and oranges.  Whenever we assume that 
unequal things are equal, we create a bubble.    

The hierarchy equations of stereology designed 
to solve for absolute values often involve multi-
ple stage sampling.  This increases the likeli-
hood that the cancelling rule cannot be obeyed.  
When the sampling stages combine data from 
fresh and fixed tissues or from two types of mi-
croscopy (light and electron), the chance of en-
countering identical cm3s across the multiple 
stages may be close to zero.  Consequently, im-
plicit in the absolute values estimated with hi-
erarchy equations is the assumption that all the 
cm3s cancel – even when it may be both theo-
retically and practically impossible.  Solutions to 
such problems of data management cannot be 
accommodated within the framework of reduc-
tionism because the theory structure is not de-
signed to deal with complexity.  Recall that the 
whole point of reductionism is to eliminate 
complexity.      

Consider a typical hierarchy equation with data 
coming from fresh tissue, light microscopy, and 
electron microscopy: 
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                                     (3) 

We must accept two highly suspicious assump-
tions: 

               and               .            (4) 

In the absence of corrections for our methods-
induced distortions, one can argue that the ex-
periment is primarily interested in detecting a 
change not in getting the most accurate esti-
mates.  When, however, we commit to this ar-
gument, a new set of assumptions come into 
play.  Now the distortion in the volumes seen in 
the controls must be identical to those of the 
experimentals.  Otherwise, the volume distor-
tions will disrupt the two estimates unequally 
and produce an unstable outcome.  Once again, 
we are forced into making another risky as-
sumption.      

Regrettably, experimental biology suffers from 
a fundamental problem.  Reductionist theory 
allows us to detect changes in isolated parts by 
comparing either concentrations or absolute 
values.  To do so, however, we must make as-
sumptions that often appear inconsistent with 
reality.  Nonetheless, reductionism as a theory 
structure remains largely unscathed because of 
the isolation it creates.  By eliminating complex-
ity, it also eliminates our ability to hold it ac-
countable.  Clearly, such an invincible design 
represents a brilliant construct (attributed to 
René Descartes, 1596-1650).     

However, such brilliance can have wide reach-
ing consequences.  Recall that one of the most 
respected ways of demonstrating correctness in 
experimental biology derives from the notion of 
reproducibility.  If several different laboratories 
do the same experiment and get the same re-
sult, then the outcome would seem to be cor-
rect.  Implicit in such a conclusion is the as-
sumption that the data are correct to begin 
with.  If this is not the case and the data are in-
correct, then a finding of reproducibility obvi-
ously leads to the wrong conclusion.  In fact, 
reproducibility confirms precision not accuracy.     

Game 2 showed that concentrations and abso-
lute data can detect changes in the same parts 
differently (Figure 1.7), but it told us nothing 
about how these estimates were affected by 
biases and experimental errors.  It did warn us, 
however, to expect consequences when we re-
move complexity from our data.      

 

Since detecting changes reliably is a mission 
critical requirement of any science and since 
reductionism appears to fall short of that goal 
when applied to biology, it may be time to re-
think our approach to change.  Accordingly, our 
next move pursues a new strategy.   

Move 3: Can we identify routinely quanti-
tative patterns in biological data?   

To make this move, we turn once again to the 
stereology literature database for help.  Pat-
terns, you may recall, lead to generalizations 
and generalizations to rules (Figure 0.2).  In 
turn, rules combine to form new theory struc-
tures.   

Biological data tend to be noisy for a variety of 
reasons.  We marginalize our data by adding 
biases, accepting high levels of biological varia-
tion, trying to detect biological changes with 
concentrations, and failing to enforce unbiased 
sampling rules.  Stereology offers a significant 
advantage because it is designed specifically to 
eliminate several of these troublemakers.      
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1-8 Design Code Equations 

Perhaps the easiest way of finding patterns is to 
fit biological data to curves with regression 
analysis.  The best patterns tend to include re-
gressions with coefficients of determination (R2) 
close to 1.0.  Such an orderly array of variables 
suggests the presence of underlying rules, pre-
sumably exercised by biology.  Since the stereo-
logical literature database contains a rich source 
of readily available data, hunting for such pat-
terns becomes a relatively simple task.  We can 
plot everything against everything else – con-
trols vs. controls, controls vs. experimentals, 
and experimentals vs. experimentals, using data 
from one or several papers. 

This plotting exercise produces a large collec-
tion of regressions (design code equations), 
which when stored in database tables simplify 
the task of looking for generalizations in one 
(Figure 1.9) or many papers (Figure 1.10).   

 

Figure 1.9 Local changes during development of the hu-
man kidney identify a distinct ordering of parts (Adapted 
from Hincliffe et al., 1991; From Bolender, 2003). 

Figure 1.9, for example, shows that parts of the 
kidney grow proportionately, as suggested by 
the almost parallel relationship of the standard 
curve (Y=X) to the experimental (Y=62.37X0.97) – 
the slopes of both curves are similar (10.97).   

Figure 1.10 plots control versus experimental 
data for parts of the lung taken from three ani-
mal species – guinea pig, pig, and rat.  Notice 
that the three animals share the same curves 

and apparently follow the same set of rules re-
lated to change.  Be aware, however, that these 
curves display R2s close to 1.0 (0.999) because 
only those points sitting on the curve or very 
close to it were included in the analysis.    

 

Figure 1.10 Global changes in the lungs of three different 
animal species taken from 10 papers (From Bolender, 
2003). 

When we plot a control part against its experi-
mental counterpart, it may or may not show a 
change.  In the absence of change, the control 
(X) and experimental (Y) values will be the 
same, and the equation will be linear: Y=X.  In 
Figure 1.10, the curve passing through the 
origin with XY and a slope1 (Y=0.84X0.98) be-
comes the candidate for no (or little) change 
and the one displaced upward for change 
(Y=2.6x1.02).  Notice that the two curves tend to 
parallel one another because they have similar 
slopes (0.98 vs. 1.02).  The figure shows that a 
change can change the amounts of a given set 
of parts, but not their proportions and that the 
same change can occur in different species.  It 
also hints that the rules for producing a change 
can generalize across several animal species – 
at least for a specific set of parts in the lung.   

By looking at many plots of biological parts un-
dergoing changes in a variety of settings 
(Bolender, 2003), the patterns lead to generali-
zations, as summarized in Figure 1.11.   
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Figure 1.11 Change in biology can occur in well-defined 
steps, where Y = experimental parts, X = control parts, 
and t(0)  t(1)  t(2) (From Bolender, 2003). 

A biological change, when expressed by a given 
set of parts with R21, often cycles through a 
series of distinct steps as the process continues 
(Figure 1.11).  As the change proceeds from no 
change (time 0) to change (time 1), the parts 
increase in amount at different rates and the 
curve becomes nonparallel (time 2).  In time, 
the original proportion of parts becomes 
reestablished and the new curve (time 3) be-
comes parallel to the original one (time 0).  In 
effect, change occurs as a highly choreographed 
series of events, wherein the phenotype under-
goes a modification in response to a complex 
cascade of genetic events.  Although the same 
ratios persist at t(0) and t(2), they become fluid 
at t(1) when the growth algorithms are in play.      

The curves shown in Figure 1.11 tell us that we 
can expect different patterns of genetic expres-
sion at t0, t1, and t2.  This may become useful to 
know when we want to map – in detail - pheno-
typic changes to genetic events.  By using the 
phenotype to determine when and where to 
look and at what, we can improve our chances 
of a successful outcome.   

 

1-9 Summary of Chapter 1 

Our first three moves have taught us several 
things.  We can deliver a relational database 
model for the biology literature, one that 
changes our relationship to published data.  
Instead of being isolated on the printed page, 
data are now free to form new relationships 
and patterns – with surprising ease. 

By storing our data in databases, we begin the 
process of challenging the assumptions of re-
ductionist theory.  By taking biology apart and 
looking for changes in individual parts, we ac-
cept or ignore – often wittingly - a host of risky 
assumptions.  Our methods, which allow us to 
detect changes in a variety of ways, tell us little 
about what produces a change.  Instead, we 
assume – more often than not - that all the 
changes we observe can be attributed to biolo-
gy and that the influence of bias and experi-
mental error is of little importance.       

Game 2 will attempt to deal with some of the 
obvious shortcoming of our current theory 
structure – reductionism – and begin to miti-
gate the effects of bias and biological variation.    
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Chapter 2 

Game 2 – Finding the Rules 

  

Reductionist theory is a construct of the scien-
tific community, one used universally in physics, 
chemistry, and biology.  When, however, we 
apply a rigorous mathematical method (stere-
ology) to biology in a data-driven environment, 
uncertainties begin to surround the methods 
and results produced by reductionist theory 
(Game 1).  Since these limitations are both real 
and self-evident, we need to consider a theory 
structure more responsive to biology with its 
pervasive and interacting complexities. 

Move 4: Can we identify the properties of a 
new theory structure for biology?   

2-1 A New Role Model 

Move 4 poses a challenge because to come up 
with a new theory structure for biology we have 
to anticipate everything at a time when we 
know practically nothing.  The only confidence 
building approach to such a riddle is to get help 
from a reputable source, one that knows practi-
cally everything and must anticipate little.   

If we recruit biology and let it construct the new 
theory structure for us, then we are back in 
business with a first rate player in charge.  This 
releases us from the otherwise inescapable 
burden of presuming to know something im-
possible to know at the outset.  By letting biolo-
gy do all the heavy lifting, the difficulty of our 
task reduces to keeping an open mind, watch-
ing, and gathering the many little details need-
ed to play the complexity game.  As we pro-
ceed, this strategy of going to biology for help 
will repeatedly reward us with winning out-
comes.  

We begin with what we already know.  Recall 
that the design code equations were able to 

deliver regressions with R2s close to one be-
cause the relationships of one part to another – 
all along the line - represented ratios.  We also 
know – by definition - that a collection of relat-
ed parts and connections defines a complexity.   

If we assemble a playing field using the same 
parts and connections that combine to form 
biological complexity, then our new theory 
structure anchors itself securely into the math-
ematical bedrock of biology.   

What we do not know at this point, is that a 
theory structure taken from biology will give us 
a complexity parallel to the real one.  How will 
this be helpful?  Biology plays very subtle, but 
extremely high-level games of which we know 
practically nothing.  It, for example, routinely 
uses complexity to trigger a vast array of emer-
gent properties.  These properties interact with 
their surroundings by instigating changes and 
feedback loops.  By combining a careful atten-
tion to detail with a generous assist from biolo-
gy, we may eventually learn to do the same 
with our own parallel complexity.               

Game 2 begins by assembling a playing field 
similar to the one biology uses to define its 
structure.  The basic building blocks, which in-
clude parts and connections, combine to form 
complexities both locally and globally.  Once 
again, we will recognize such complexities as 
patterns, which we can capture numerically 
with ratios, equations, and graphics.    

2-2 Data Pairs (Ratios) 

If organization is the first step toward under-
standing complexity, then storing data from the 
biology literature in a relational database starts 
the process.  The hard lesson learned from 
move 3 (Chapter 1) was that access to a large 
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collection of concentrations and absolute values 
did not translate into an over abundance of 
quantitative patterns.  At the time, it appeared 
that the putative patterns were most likely be-
ing overwhelmed by methodological bias and 
animal variation and underwhelmed by the rel-
atively small sample sizes.  In other words, the 
data were probably too noisy and too few in 
number to capture biology as it actually exists.  
In other words, the rules were beyond our 
reach.     

Accordingly, the focus of the project shifted to 
finding ways to minimize the effects of meth-
odological bias and biological variation and to 
increase the sample size (Bolender, 2001-2004).  
Forming ratios of one part to another improved 
the data in several ways.  When two parts form 
a ratio, the effects of biases common to both 
values effectively cancel out.  However, when 
this is not the case, the unshared biases remain 
and continue to distort the value of the ratio.   

Although we can identify many potential 
sources of bias (Bolender, 2002; 2007A), making 
meaningful corrections requires an ability to 
separate biology from the artifacts created by 
our methods – a skill not yet available to us.  
Nonetheless, forming ratios reduces the effects 
of animal variation coming from different sized 
animals with different sized parts - within and 
across species.  Recall that biology allows abso-
lute values for its parts to vary widely, but is 
much stricter in maintaining the ratio of one 
part to another.  This preference of biology for 
ratios identifies a first principle.    

Shifting from data points to data pairs eased the 
sample size problem - substantially.  Starting 
with the data set of a given paper, data pairs 
were formed by generating all possible permu-
tations – taking two parts at a time.  This quickly 
produced a data pair table containing more 
than 50,000 entries (Figure 2.1).  This new da-
tabase - based on ratios – became the playing 
field for our first complexity game.        

2-3 Universal Biology Database 

As the name implies, a universal database can 
store all types of biological data as ratios in a 
database table.  Data used to form these ratios 
can include volumes, surfaces, lengths, and 
numbers, along with most data derived there-
from (Bolender, 2005).  Notice what happens.  
By storing data from many sources in the same 
place, they can work together across disciplines, 
animals, and settings.  In effect, the database 
maximizes the likelihood of finding patterns in 
published data. 

Initially, this “data togetherness” approach may 
seem somewhat curious in that our training 
teaches us quite the opposite.  When we collect 
data from biology according to reductionist 
theory, we dutifully isolate them from their 
normal surroundings and then set them apart 
from their peers by our method of publishing.  
When, instead, we store data as data pairs in a 
common database table, they can connect, 
form patterns, and begin to tell stories.  

 

Finding patterns, however, can become prob-
lematic - particularly when data are sparse and 
disconnected.  One way of alleviating this prob-
lem is to assign each data point to an equation.  
Move 5 uses the data pairs in the universal bi-
ology database to explore this approach.     



30 

 

 

Move 5: Can an equation predict data 
points and a data point an equation?   

Consider the table in Figure 2.1.  It includes a 
collection of data pairs expressed as ratios X:Y.  
If we divide Y by X, X becomes 1 and Y becomes 
some number i, X:Y = 1:i.  If we sort the table on 
column i in descending numerical order, we can 
continue fitting the Y values to a regression line 
(y=xba) until the coefficient of determination 
(R2) reaches and maintains a value of 0.9999.  
When the R2 starts to fall below 0.9999), we 
stop, back up slightly, and start a new regres-
sion equation for the next step.  This process 
continues until all the data points (50,000+ rows 
in the database table) belong to a regression 
equation.  Now each data point predicts an 
equation and an equation data points.  By divid-
ing the predicted value for Y by its observed 
value (the original number), we can see that the 
equations predict the outcomes remarkably 
well (Figures 2.1).   

 

Figure 2.1 The data pair table includes ratios (Y/X), ratios, 
repertoire equations, and an assessment of how close the 
equations predict the original ratios (see the yellow col-
umn).   

 

 

These new expressions, called repertoire equa-
tions, generate a wide range of patterns, solu-
tions, and insights.  Move 6 explores the poten-
tial of these equations with their data pair rati-
os.  Notice that we have begun the process of 
gathering evidence to convince ourselves that 
biology is operating - by rule – and running on a 
mathematical platform.     

Move 6: Can we extract patterns as equa-
tions from a table of data pair ratios?   

A universal biology database made up of data 
pair ratios begins to change our perception of 
the biology literature in several ways.  Published 
data go from inaccessible to accessible, discon-
nected to connected, passive to active, and in-
flexible to flexible.  These improvements come 
from merely watching biology and duplicating 
the way it orders it parts - quantitatively.      

Our universal database also allows us to discov-
er that biology’s rules will define much of what 
we can do.  Data pair ratios, for example, can 
detect these rules as equations that begin to 
explain how biology uses its parts and connec-
tions to create complexities.  The problem, 
however, is that our biological data carry many 
types and levels of complexity that we will have 
to figure out how to identify, access, and inter-
pret.              
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2-4 Repertoire Equations 

Making the transition from reductionism to 
complexity requires little more than switching 
from concentrations and absolute values to di-
mensionless ratios.  Repertoire equations, 
which plot data pairs (X vs. Y) as regressions, 
detect widespread order as patterns within and 
across publications (e.g., Figures 2.2, 2.3, 2.4).  
They show how biology – as a complexity - 
manages its parts.        

Figure 2.2 indicates that different cytoplasmic 
organelles form well-defined ratios with the 
endoplasmic reticulum and that the same ratios 
can persist within and across species.   

Figure 2.2 A high degree of order exists in the relation-
ship of the endoplasmic reticulum to other cell organelles 
(From Bolender, 2004).  The figure demonstrates that 
different organelles from different sources can occur in 
exactly the same proportion with the endoplasmic reticu-
lum.  Notice that the experimental curve (dark line) is 
linear (the slope=1.0), which explains why it can be paral-
lel to the reference line (er vs. er) (From Bolender, 2004).  

Extracting patterns from relatively sparse data 
sets, however, remains a challenge.  Typically, 
the immediate result of plotting two different 
parts against each other are clumps of points 
with R2 far from removed from 1.0 (Figure 2.3;  
Bottom: before).  However, the clumps typically 
contain an underlying order (same figure, after - 
top) that we can extract with repertoire equa-
tions.  These equations begin to explain the way 
biology constructs itself using rule-based ratios.   

The equations also tell us that a given part can 
share connections (ratios) with many other 
parts and that the same two parts of a pair can 
connect to one another in different propor-
tions.  In other words, parts larger than mole-
cules display valences analogous to those of 
chemistry.  A potentially confounding property 
of valences is that they can vary widely when a 
change is occurring (Figure 1.11 – (t1)).      

Figure 2.3 Regression analysis turns clumps of data (Rep-
ertoire - before) into sets of parallel repertoire equations 
(Repertoire - after) (From Bolender, 2004).  Notice that 
the many different cells of the testis show a remarkable 
degree of order.   

This newfound ability to transform noisy data 
(clumped) into quiet (equations with R21) oc-
curs often enough to create a repertoire library 
of examples (Figure 2.3).  Moreover, the pro-
cess works throughout the biological hierarchy 
of size.   

A worked example explains the method.  We 
begin with estimates for the volumes of Golgi 
(X) and mitochondria (Y) collected from a varie-
ty of animals (Bolender, 2004).  Go to the data 
pairs table (Figure 2.1), type <mito> into the x 
name field, press Enter, click on sort Y button, 
and save the results to an Excel file.  Now in 
Excel, start with Golgi and sort the X/Y column 
(containing the numerical values) low to high.  
Next, highlight the first three data pairs of Golgi 
and select a scatter graph.  Change the axes to 
logs and fit the three points with a power re-
gression line.  If the R2 does not approach 0.999, 
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add extra points – line by line – until it does.  
When the R2 comes close to 0.999, stop and 
start a new regression.  The result is a set of 
parallel repertoire equations defining the quan-
titative relationship of mitochondria to Golgi 
(Figure 2.4).   

Figure 2.4 Top: A repertoire plot shows the relationship 
of mitochondria to Golgi.  Typically, such comparisons 
display data clumps with weak correlations.  Bottom: 
When fitted to repertoire equations by removing outliers 
(defined here as points not on or close to the line), the 
data clumps unfold into a set of parallel lines with R

2
 

close to 1.0.  Since plots of control and experimental 
comparisons typically form clumps, this becomes a useful 
tool for extracting quantitative patterns from otherwise 
noisy data sets (From Bolender, 2004). 

By applying this type of analysis to data pairs 
distributed throughout the biological hierarchy 
and coming from many different species, we 
can infer that quantitative relationships be-
tween and among parts exists as a universal 
property of living systems.   

2-5 Ladder Equations 

Equations allow us to begin the task of defining 
the fundamental structure of biology by form-

ing patterns that nest, connect, unfold and fold.  
To demonstrate such properties, we can reduce 
the 50,000+ ratio data (data pairs) in the uni-
versal biology database to a single ladder equa-
tion (Figure 2.5).  It displays an exponential 
form with R2 close to one (Y = 0.000134e0.7498x, 
R2 = 0.999).  The Y intercept of this equation 
derives from the Y intercepts of 24 rung (power) 
equations (Bolender, 2003-2004).  Although the 
algorithm used to make these calculations may 
or may not have a biological equivalent, it at 
least shows that order in biology can scale 
quantitatively by nesting equations.  It suggests 
– at least theoretically - that biology could start 
with a single equation (rule) and apply unfold-
ing algorithms to assemble a phenotype – hav-
ing all its parts in the correct proportions.  If 
biology stores such phenotypic templates in 
some real or virtual space, the curve at t(1) of 
Figure 1.11 suggests where, when, and how we 
might begin to look for it mathematically.                 

Figure 2.5 A ladder equation becomes the result of fitting 
a collection of 24 rung equation data (Y intercepts) to an 
exponential curve (From Bolender, 2003). 

When we compare the ladder equation of Fig-
ure 2.5 to one derived from changes (Figure 
2.6), the curves intersect and bear a striking 
resemblance to the solution of a linear pro-
gramming problem.  We would expect to find 
such a result if the structure of living things 
changes in such a way as to produce the opti-
mal (best) outcome.    
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Figure 2.6 Two intersecting equations suggest that 
change in biology may represent an optimal solution 
(From Bolender, 2004). 

2-6 Rung Equations   

When plotted as power curves (Y=bXa), rung 
equations display order as a set of 24 parallel 
regression curves, all having R2s0.999.  Figure 
2.7 displays the equation for rung 15 of the lad-
der equation (Figure 2.5).  

Figure 2.7 Rung equations represent regressions fitted to 
data pairs (From Bolender, 2004).  Notice that the power 

curve (Y=bX
a
) for rung 15 has a slope of 1.0002, which 

makes it effectively linear (Y=bX) (From Bolender, 2004).     

Histograms of these rung equations provided an 
early indication that biological parts exhibit a 
stoichiometric order (Figure 2.8), expressed as 
ratios of whole numbers, and reminiscent of 
chemical valences.  These biological valences 
can be seen in data pair tables by sorting on the 
ratio column where X=1 Y=? (Figure 2.1).   

This represents a new and important finding.  
Parts capable of existing in different valence 

states, for example, must be contributing a sub-
stantial amount of noise to absolute data and 
concentrations because these measures provide 
only averages.  As expected, this influence of 
the valence state on our understanding of 
change remains hidden until we express the 
data as ratios.  We soon will discover that de-
signing simulators for biology depends im-
portantly on considering valences when predict-
ing outcomes (Bolender, 2005-2011).  By identi-
fying valences as a distinct contributor to bio-
logical complexity, we have found another first 
principle of biology.      

Figure 2.8 shows the relationship of mitochon-
dria to other cell organelles - expressed as a 
ladder equation.  As expected, the individual 
rung equations displayed a pattern reminiscent 
of the parallel regression lines (Figure 1.10 and 
Bolender, 2004).  When plotted as a histogram, 
however, the ratios form distinct steps (Figure 
2.8 - lower panel).  This suggested that the rela-
tionship of one organelle to another describes a 
digital (discontinuous) rather than an analogue 
(continuous) distribution.  This observation is 
particularly important because it will guide us to 
a new and more powerful digital format for our 
repertoire ratios and equations (Move 8).    

The steps displayed in Figure 2.8 also suggest a 
deeper interpretation in that they may reflect 
the switching behavior of the genes responsible 
for producing the parts that form the ratios.  
Such a stepped pattern, for example, could be 
produced by similar sets of genes being turned 
on or off.      
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Figure 2.8 Ladder equation for mitochondria plotted 
against other cell organelles.  Notice that when the data 
pair ratios (Y/X) are plotted as a histogram, steps appear 
(From Bolender, 2004). 

Notice what happens when we plot ladder 
equations for all the organelles in the database.  
They display unique signatures.  Each blue point 
in Figure 2.9 represents the y intercept of a 
power equation and each stack of points a dif-
ferent organelle view.  The consistency in the 
linear separation of the blue points suggests the 
presence of discrete steps, as suggested by the 
histogram of Figure 2.8.    

 

Figure 2.9 When the y intercepts of power equations are 
fitted to exponential equations, a global pattern of order 
can be seen (regression lines not drawn).  Connections 
between organelles clearly appear to be ordered by rule 
(From Bolender, 2004).   

 

 

Since we now know how to extract patterns 
from published data as equations, we can use 
them to assemble simulators.  Move 7 provides 
several examples.    

Move 7: Can we assemble simulators with 
data pair ratios? 

2-7 Simulators 

When we connect a stack of repertoire equa-
tions, a change in the variable of one equation 
will spread to all the remaining equations.  In 
effect, this predicts the outcomes for all the 
parts in a connected set.  The program illustrat-
ed in Figure 2.10 includes a collection of simula-
tors connecting the repertoire equations of 
eight organelles - nucleus, cytoplasm, lysosome, 
er, Golgi, lipid droplet, mitochondrion, and pe-
roxisome.  In the example shown, entering a 
new value for the nucleus and pressing the tab 
key triggers a cascade of changes to the other 
organelles.  Notice that each organelle displays 
a column of new values, each of which carries a 
unique valence.  Recall that same two parts can 
combine with different ratios of whole num-
bers.  For example, mitochondria display 18 va-
lences - globally.     
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Valences (expressed as ratios) play an essential 
role in defining a phenotype quantitatively.  
Since they can change in experimental settings, 
they add a key layer of detail to the diagnostic 
and predictive properties of a phenotype.   

Figure 2.10 The nucleus displays several distinct relation-
ships with other organelles.  This simulator uses reper-
toire equations to connect changes in the nucleus to the 
organelles identified in the blue heading.  Such data con-
tribute to the finding that parts larger than molecules 
employ valences when making connections (From 
Bolender, 2004).   

2-8 Reverse Engineering  

If we take the hippocampus apart, for example, 
we can reconnect the parts with data pair ratios 
and reassemble the hippocampus with reper-
toire equations.  In turn, entering a single seed 
value into the network of equations regener-
ates the original values or predicts new ones.  
By assigning a separate highlighting color to 
each animal type and applying it to each output 
value, we can compare the results of five ani-
mals (human, monkey mouse, rat, and shrew) 
across six parts of the hippocampus (Bolender, 
2005). 

 

Figure 2.11 The hippocampus expressed as ratios of vol-
umes (red) and cell numbers (blue).  The yellow highlight 
identifies valences found in humans, which can be com-
pared to those found in rats, mice, shrews, and monkeys.  
To predict the effects of a change in the hippocampus, 
enter a new value for ca1 and press Enter.  The output 
shows what happens to biological parts when they 
change in a complexity (From Bolender, 2005).        

These simulators demonstrate that we can re-
assemble the parts of organs post-mortem us-
ing data pair ratios and repertoire equations.  
More importantly, they uncover a previously 
unknown complexity in the data set as evi-
denced by the presence of multiple valences.  
By ignoring valences as a prominent feature of 
biological complexity, we diminish the infor-
mation content of our data by accepting the 
lowered resolution of averages.  Moreover, we 
may be distorting our statistical estimates of 
biological variation as well.    

We need a quick reality check.  The one thing 
we cannot know at this point in the game is the 
extent to which these valences are real or a re-
sult of our experimental methods.  We can 
surmise, however, that both possibilities are 
most likely in play.  Although we know that 
many biases exist, we continue to know little or 
nothing about the details of their magnitude or 
direction.  This identifies a major weakness in 
our current experimental systems.     
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Thus far, the ratio data continue to suggest a 
digital rather than an analogue data structure 
for biology.  In other words, outcomes often 
display a discontinuous (step like) distribution 
rather than a continuous one (Figures 2.3-2.11).  
The next move acts on this observation by con-
verting the original data pair ratios to decimal 
ratios and decimal repertoire equations.   

Move 8: Can we enhance our ability to de-
tect patterns in data by shifting from an 
analogue to a digital format? 

2-9 Decimal Ratios and Decimal 
Repertoire Equations   

Patterns – derived from data pair ratios – un-
covered previously undetectable relationships 
in the data of biological stereology (Moves 6 
and 7; Bolender, 2004).  When expressed as 
ratios (Y/X), however, the data pairs are some-
what unwieldy in that the absence of distinct 
boundaries between adjacent patterns creates 
challenges of interpretation when filtering and 
sorting the data tables.     

This problem can be resolved by assigning the 
data pair ratios to distinct decimal bins, which 
are determined by calculating decimal reper-
toire equations for the data contained within 
each bin (Bolender, 2005) – a procedure analo-
gous to the one described earlier for rung equa-
tions (2.6).  This binning procedure condensed 

more than 50,000 data pairs into just 81 deci-
mal ratios accompanied by their decimal reper-
toire equations (Bolender, 2005).   

The decimal steps were chosen such that the 
regressions predicted the published values with 
a maximum error of no more than ±15% - the 
typical error associated with stereological esti-
mates (note that the original range (0.001 to 
100,000) of the decimal steps was later revised 
(0.0001 to 100,000)).  By switching to a decimal 
format, the data pairs displayed distinct bound-
aries, which allowed filtering and sorting rou-
tines to locate patterns quickly.   

2-10 Extracting Hidden Infor-
mation 

By attaching each data pair ratio (Y/X) to a dec-
imal repertoire equation, it became possible to 
extract hidden patterns – as ratios and equa-
tions – from large and otherwise amorphous 
clouds of data.   

An illustrative example comes from the work of 
Seecharan et al. (2003) who counted cells in the 
lateral geniculate nucleus and retina, using 58 
isogenic strains of mice.  These authors were 
looking for neural connections in the visual sys-
tem, but found only weak correlations (e.g., 
R=0.44; R=0.33) within the lateral geniculate 
nucleus and no correlations between the neu-
rons in the nucleus and those in the retina.   

After entering the cell counts from the lateral 
geniculate nucleus into the stereology database 
and forming data pairs, a pattern similar to the 
one reported in the original paper appeared 
(Figure 2.12; Top: Before).  The R2 of the regres-
sion line was 0.03.   
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Figure 2.12 Top: Plotted cell counts from the lateral ge-
niculate nucleus showed a single data cloud with little 
indication of order (After Seecharan et al. 2003; From 
Bolender, 2005).  Bottom: The same amorphous data 
cloud was unfolded into 14 decimal repertoire equations 
wit R2s >0.9.  Notice how the decimal repertoire equa-
tions allow us to distinguish between closely related 
phenotypes quantitatively.     

When analyzed with decimal repertoire equa-
tions, however, a very different picture 
emerged (Figure 2.12; Bottom: After).  The data 
cloud was quickly resolved into 14 decimal rep-
ertoire equations with R2s >0.9. 

The equations of Figure 2.12 tell us that in 58 
isogenic strains of mice there are 14 ways to 
build a lateral geniculate nucleus.  The table in 
Figure 2.13 summarizes these changes ex-
pressed as decimal ratios.  Consider the three 
columns of the table highlighted in blue.  Notice 
that each set of three ratios in a given row is a 
unique identifier of its specific strain.  This con-
cept of a unique identifier based on ratios will 
play a key role in Chapter 5 when we attempt a 
data driven approach to clinical diagnosis.       

Figure 2.13 A connection matrix illustrates the cell ratios 
in lateral geniculate nucleus of 58 isogenic strains of mice 
(Adapted from Seecharan et al. 2003; From Bolender, 
2005).  The cells include neurons (neu), glia, and endothe-
lial cells (endo).  Three cells taken two at a time give six 
data pair ratios.  The blue highlight identifies a ratio <1, 
green=1, and red >1.     

The unsettling finding of this study is that oper-
ating anywhere on the genome – adding or sub-
tracting genes to produce isogenic strains – re-
sults in both intended and unintended conse-
quences.  In the isogenic strains, with genetic 
changes largely unrelated to the nervous sys-
tem, the ratios of the cells (i.e., their valences) 
in the lateral geniculate nucleus showed exten-
sive variability (Figures 2.12, 2.13).  From this 
observation, one begins to suspect that in an 
organism, everything is connected and even 
small local perturbations can have global con-
sequences.  This suggests that genes may be 
playing the role of butterflies made famous by 
chaos theory (Kauffman, 1995; Walthrop, 
1992).  To wit, initial conditions can have enor-
mous effects – a butterfly flapping its wings can 
trigger a storm at a location far removed.   

Although modifying organisms genetically has 
become a routine operation, we cannot begin 
to know the consequences of such changes un-
less we begin to study biology as a complexity.  
The Seecharan data makes this point powerfully 
clear.   
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2-11 Growth Kinetics 

Recall that the familiar growth curve for cells in 
vitro appears as an exponential curve, tailing off 
at both ends.  In effect, biology expands a cell 
population by running a growth algorithm 
based on an exponential rule.  Such a rule, 
however, suggests that the parts of these grow-
ing cells must be expanding exponentially as 
well.   

Organelle data collected with stereological 
methods from keratinocytes in the epidermis 
(Klein-Szanto, 1977), expressed as ratios, and 
plotted as exponentials display the expected 
pattern in intact tissue.   

As keratinocytes travel across the stratified 
squamous epithelium of the skin, their orga-
nelles grow according to an exponential rule.  
Connections between the endoplasmic reticu-
lum (er) and associated organelles (mitochon-
dria, melanosomes, lysosomes, lipid, and ribo-
somes) all fit exponentials.  This would suggest 
that biology optimizes the growth of organelles 
in keratinocytes.  Why?  Recall that establishing 
a log growth phase for cells in vitro requires 
optimal growth conditions.  By analogy, it would 
appear that biology can do the same in vivo 
(Bolender, 2005).  Getting all the right parts in 
the right places at the right time to optimize an 
outcome suggests that keratinocytes know how 
to solve the extremely difficult problem of co-
ordinating production, transport, and construc-
tion – perhaps perfectly.  For us such a solution 
would be equivalent to solving a very tall stack 
of simultaneous equations.  Given such an out-
come, we now have another candidate for a 
first principle, namely optimization.     

 

The effect of this move has been to shift our 
ratio data to a digital (stepped) format, which 
simplifies our task of finding and interpreting 
patterns.  The examples given continue to offer 
evidence that mathematical order exists in data 
sets derived from biology.  In the next move, we 
will attempt to extend this effort to the entire 
database. 

Move 9: Is it possible to phenotype biology 
- quantitatively – and to express the results 
as a biological blueprint? 

In this move, we will use a universal biology da-
tabase containing decimal repertoire ratios – 
from a wide range of animal species - to con-
struct a biological blueprint.  In turn, we will use 
the blueprint to look for equations, patterns, 
and generalizations that can tell us something 
about the biological rules basic to phenotypes.  

2-12 Biological Blueprint 

By unfolding biological complexity into stand-
ardized units of information (ratios and equa-
tions), we can arrange published data into a 
composite blueprint.  The blueprint can tell us 
how an organism defines its parts quantitatively 
and how a given phenotype retains or abandons 
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these relationships – within and across species.  
We will also revisit the issue of valences, where-
in the same two parts can form different ratios.   

When populating the blueprint, the data entry 
process consists of working through the list of 
data pair ratios in the universal biology data-
base and recording the identity (X:Y) and fre-
quency (n) of each ratio (Figure 2.14, Top).  
When completed, the blueprint summarizes the 
ratios, valences, and frequencies (Figure 2.14, 
Bottom).   

In effect, the blueprint offers an empirical over-
view of the mathematical core of biology – as it 
exists in the post-mortem data set of stereolo-
gy.  It shows that biological parts larger than 
molecules display a stoichiometry of whole 
numbers with many similarities existing within 
and across species.  This suggests that organ-
isms sharing the same parts with the same rati-
os are reading from the same playbook.  In ef-
fect, the rules supervising these shared ratios 
appear to be highly conserved across biology.   

 

Figure 2.14 Top: Data entry consists of tabulating all the 
connections (ratios) associated with a given pair of parts.  
Bottom: The biological blueprint documents the distribu-
tion of data pairs, ratios, valences, and frequencies (From 
Bolender, 2006). 

Order in biology seems to be contagious.  The 
ratio of one part to another depends on a vast 
number of subparts all of which find their origin 
in the genome.  If parts are highly ordered in 
the phenotype, can we assume that this order 
projects back to the genotype?  If yes, then it 
should be possible to use the order in the phe-
notype to identify a corresponding order in the 
genotype.  By choosing the direction of infor-
mation flow, we gain a substantial advantage.  
Going from a story – the phenotype - back to 
the words – the genes – is going to be far easier 
than going from the words to the stories that 
has taken biology a very long time to write.  If 
we think of genes as a library of templates with 
switches that tell stories by creating pheno-
types, reading such stories would seem to re-
quire little more than figuring out how to read 
phenotypes quantitatively all the way back to 
the genome.  Such is the promise of stereologi-
cal data.           

The blueprint also serves as a convenient refer-
ence table for looking up phenotypes.  A given 
pair of parts (X, Y) often display several distinct 
valences, characterized as multiples of whole 
numbers (X:Y).  The ratio of mitochondria to 
peroxisomes, for example, can be 10:1, 20:1, 
and 33:1 – depending on the cell, animal, and 
experimental setting.  Recall that such pheno-
typic information becomes essential when writ-
ing simulations, constructing networks of equa-
tions, or trying to detect changes.  Moreover, 
the blueprint suggests that biology has evolved 
a universal parts inventory that it draws from 
when assembling species, growing, making re-
pairs, and adjusting to the disease process. 

One of the many challenges of operating within 
a complexity includes identifying patterns of 
parts that exist as distinct relationships, includ-
ing one to many and many to many.  Fortunate-
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ly, the query by example (QBE) feature of rela-
tional databases offers a ready solution.  The 
QBE interface shown in Figure 2.15 allows the 
user to assemble a query by selecting items 
from drop down list boxes.  Clicking on the Que-
ry button sends the query - translated into the 
Structured Query Language (SQL) - to the data-
base, which promptly returns a response.  The 
screen shown in Figure 2.15 (Top), for example, 
wants to know all the data pairs that occur in 
the ratio of 1:2.  The response includes 77 data 
pairs (Figure 2.14, Bottom).  

 

Figure 2.15 Top: The SQL interface shows the selection of 
the X:Y ratio of 1:2.  As items are selected from the query 
screen, the SQL script at the bottom of the screen up-
dates accordingly.  Bottom: Clicking on the Query Button 
sends the request to the database, which promptly re-
turns the information requested (From Bolender, 2006).   

Finally, we can use the blueprint to look for 
generalizations.  When expressed as a histo-
gram (Figure 2.16), a summary of the entire 
blueprint table (Figure 2.14 bottom) shows that 
biology uses only about 50 decimal repertoire 
ratios, with far fewer doing most of the work 
(Figure 2.17; Bolender, 2006).  Notice that the 
ratios identify five major peaks of activity.  

Figure 2.16 Distribution of the decimal repertoire ratios 
and corresponding equations in the biological blueprint 
(From Bolender, 2006).   

Of the total blueprint entries (4,296) in Figure 
2.16, roughly 40% include just six decimal rep-
ertoire equations (ratios): 50 to 1, 10 to 1, 3 to 
1, 1 to 1, 2 to 3, and 1 to 10 (Figure 2.17).   

 

Figure 2.17 The table lists the ratios in the biological 
blueprint occurring with the greatest frequency (From 
Bolender, 2006). 

For neurons, the percentage of the most popu-
lar ratios goes up to about 70%.  Neurons use 
six decimal repertoire equations defining five 
ratios: 3 to 1, 2 to 1, 3 to 2, 1 to 1, and 2 to 3. 

The point to take from Figures 2.16 and 2.17 is 
that biology appears to be controlling the rela-
tionship of one part to another quite specifical-
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ly.  Since the same ratios can apply to parts 
ranging in size from small to large, it looks as if 
the entire biological hierarchy is subject to a 
common set of rules.  By simply forming ratios 
of small whole numbers, we can find the rules 
biology uses to order its parts.  Stoichiometry, a 
first principle of chemistry, seems to be a first 
principle of biology as well. 

In fact, first principles often generalize.  Harmo-
ny in music, for example, occurs when two 
pitches vibrate at frequencies in small integer 
ratios.  Especially pleasing ratios include 2:1, 
2:3, and 3:4, two of which resonate with ratios 
just found in the human brain.  Whether biology 
is subject to such universal principles by default 
or if they are selected for, remains, of course, 
an open question.     

 

Once we know that biological order is quantifi-
able and accessible, we can explore new ways 
of finding and creating patterns of our own.  In 
the next move, we will combine ratios of parts 
into equations to quantify phenotypes.    

Move 10: Can a polynomial equation con-
tain enough information to capture quanti-
tatively the properties of a phenotype? 

By expressing phenotypes as single equations, 
we can compare them visually and quickly iden-

tify patterns of change in complex data sets.  
This allows us to explore the potential role of 
data pair ratios in diagnosis and prediction.  

2-13 Connection Phenotypes 

The connection phenotype is a set of parts (data 
pairs), plotted as a frequency distribution, and 
fitted to a polynomial regression.  As such, it 
represents a convenient way of expressing and 
interpreting a large data set visually (Bolender, 
2008).   

When calculating a connection phenotype, con-
centrations can work as well as absolute values 
provided control and experimental data sets 
remain separate.  A change is detected by ob-
serving differences in patterns, not by dividing 
an experimental point by its control.  Concen-
tration data are limited in that a change can be 
detected, but it cannot be explained in terms of 
changes occurring in the individual parts making 
up the concentration.  This requires absolute 
data.  By eliminating the need to divide one 
concentration by another and minimizing the 
effects of bias and biological variation by form-
ing ratios, connection phenotypes can extract 
valuable information from concentration data.       

Since many publications still attempt to detect 
biological changes by dividing one concentra-
tion by another, the connection phenotype 
method of analysis improves the reliability of 
concentration data for detecting changes by 
comparing patterns instead.  Since an emerging 
goal of investigative biology is to develop meth-
ods for mining new information from the mil-
lions of papers populating the literature, we will 
return to this topic often.       

Biology blueprint expressed as connection 
phenotypes: Figure 2.18 translates the entire 
data set of the biological blueprint (Move 9) 
into two polynomial equations, one for control 
(blue) and the other for experimental (red).  
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Figure 2.18 The connection phenotypes plot all the data 
pair ratios of the biological blueprint (CO=5224; EX=4095) 
as two polynomial equations (From Bolender, 2008).  
Blue identifies control and red experimental. 

The plot shows how the data pair ratios of the 
controls can change in an experimental setting, 
wherein peaks and valleys alter their heights 
and locations, appear, or disappear.  Such dif-
ferences can be examined by identifying the 
data pair ratios at a given location along the x-
axis - numbered from 0.001 to 500 (Figure 
2.18).  Methods for calculating connection phe-
notypes appear elsewhere (Bolender, 2008).   

Growth in the rat adrenal: Patterns often unde-
tected with standard methods of analysis be-
come readily apparent when expressed as con-
nection phenotypes.  Figure 2.19, for example, 
shows the development of the adrenal gland in 
the rat.  Notice that the same patterns in the 
ratio of parts (yellow=yellow, green=green) ap-
pear, disappear, and reappear as the adrenal 
enlarges during development.  The figure is of 
interest because it captures an ongoing growth 
program of biology with eight still frames (data 
columns).  Such ratios may prove helpful in 
working out the orchestration of genetic events, 
which occur as an interaction between the gen-
otype and the developing phenotype.  Recall 
that we detected a similar pattern earlier with 
design code equations in Figure 1.11. 

 

Figure 2.19 Development of the adrenal gland displays 
repeating patterns (yellow, green) over time (left to right) 
(Adapted from Nikicicz et al., 1984; From Bolender, 
2008).   

ACTH and Growth in the hamster adrenal: Fig-
ure 2.20 shows the effect of ACTH on the de-
velopment of the hamster adrenal.  Once again, 
repeating patterns appear (yellow=yellow, 
green=green). 

 

Figure 2.20 Notice that the response of the adrenal to 
ACTH during development also shows repeating patterns 
(yellow, green) over time (Adapted from Malendowicz, 
1986; From Bolender, 2008). 

Complexity of change: Connection phenotypes 
routinely uncover changes that absolute values 
miss.  This can occur because comparing two 
data pair ratios involves the behavior of four 
variables, not just the two of a traditional con-
trol versus experimental comparison.      

The top panel of the connect-the-dots display in 
Figure 2.21 joins each data pair (X Name: Y 
Name) found in the hippocampus of normal 
subjects to its counterpart in patients with Par-
kinson’s disease.  Although most of the connec-
tions suggest a change, the eight highlighted in 
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yellow suggest substantial differences in the 
range of 25 to 67% with a mean of 47%.  In con-
trast, the original study reported no changes at 
all in the hippocampus (Harding et al., 2002). 

 

 

Figure 2.21 Top: In this connect the dots plot, the control 
hippocampus (left) is compared to one with Parkinson’s 
Disease (right).  The arrows identify the control and ex-
perimental locations of the same data pair ratio (Adapted 
from Harding et al., 2002; From Bolender, 2008).  Bottom: 
Polynomial equations identify the two patient groups 
(normal=blue; Parkinson’s=red).   

Figure 2.21 (Bottom) plots the data pairs as pol-
ynomial equations.  The adjacent yellow dots 
identify the locations of two data pairs from the 
table highlighted in yellow.  This allow us to see 
how specific data pairs move from the normal 
curve (blue) to the one representing patients 
with Parkinson’s disease (red).   

The value of the polynomial plots comes from 
their ability to provide the big picture without 
overwhelming the viewer with details.  Such 
curves also encourage us to think about how 
diseases of the brain share similarities and dif-
ferences and how these structural patterns 

might relate to symptoms, diagnosis, and 
treatment protocols.   

For example, we can readily compare plots of 
schizophrenia, epilepsy, Parkinson’s disease, 
and alcoholism (Figure 2.22).  Notice in the fig-
ure that the control (blue) and experimental 
(red) curves in three of the four diseases display 
surprisingly similar curves, even though each 
panel characterizes somewhat different parts of 
the brain.  In contrast, epilepsy displays quite a 
different set of curves.  Since the plots all derive 
from data collected post-mortem, their rela-
tionship to the patterns in living patients re-
mains – for now - an open question.       

Schizophrenia – human 

 

Epilepsy – human 

 

Parkinson’s disease – human 

 

Alcoholism – human 

 

Figure 2.22 Connection phenotypes compare the poly-
nomials of controls (blue) to experimentals (red) (From 
Bolender, 2008).  The similarity of these patterns predicts 
a similarity in the design of these disorders.   

In short, connection phenotypes can use tabular 
data or polynomial equations to identify quanti-
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tative patterns in control and experimental da-
ta.  They summarize large data sets, discover 
differences otherwise undetectable, and display 
diagnostic properties.  

 

Notice what is happening.  Now that we are 
actively playing the complexity game with biol-
ogy, we are learning that what we can do scien-
tifically depends on the properties of our theory 
structure.  By allowing our data to evolve from 
isolated data points to connected data pairs, we 
are now in the process of moving away from 
reductionism and toward complexity.  In addi-
tion to detecting changes, our data can now 
produce equations, patterns, generalizations, 
and rules – all of which can uncover first princi-
ples.   

To increase our level of play, we now have two 
options.  We can increase the sample size or 
introduce more complexity.  Alternatively, we 
can do both simultaneously by upgrading our 
playing field from data pairs to data triplets to 
data quadruplets. 

 

Move 11: Can we increase the information 
content of our data by increasing the num-
ber of variables in the data ratio from two 
(X:Y) to three (X:Y:Z)? 

2-14 Data Triplets   

Using ratio data offers several advantages not 
the least of which is an ability to increase our 
level of play.  Starting with a relatively small 
number of published data points, we can end 
up with a considerably larger data set contain-
ing much more information.   

Consider, for example, data triplets.  We begin 
with three named parts A, B, and C and their 
respective values X, Y, and Z.  Three parts taken 
two at a time, give six data pairs: A:B, A:C, B:A, 
B:C, C:A, C:B.  After adding the values, we get 
AX:BY, AX:CZ, BY:AX, BY:CZ, CZ:AX, CZ:BY.  A 
triplet exists when two data pairs share the 
same name and value.  If BY=BY for data pairs 
AX:BY and BY:CZ, they form the triplet AX:BY:CZ.  
(Note: This manual approach to forming triplets 
will be replaced in the next chapter by one that 
operates automatically.)  In turn, parts making 
up this triplet can be arranged six different 
ways: AX:BY:CZ, AX:CZ:BY, BY:AX:CZ, BY:CZ:AX, 
CZ:AX:BY, and CZ:BY:AX. 

What is the point of including six copies of the 
same information, merely arranged in a differ-
ent order?  The short answer is that it optimizes 
outcomes.  When looking for global patterns 
across many papers, we are least likely to miss a 
match when all possible permutations are in 
play.  Moreover, if a single triplet misses a pat-
tern because of the decimal binning of data, we 
still have several more chances to capture it.     

Creating data ratios also has a profound multi-
plier effect, as shown in Figure 2.23.  Notice 
that 5 original points taken two at a time yield 
20 data pairs, 10 points yield 90, and 25 points 
yield 600.  Taking N parts 3 at a time to form 
data triplets takes it up a notch - 5 points now 
yield 60 triplets, 10 yield 720, and 25 yield 
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13,800.  Quadruplets, however, can quickly 
push the numbers well beyond our ability to 
manage them.  In this chapter, for example, we 
use roughly 46,000 data pairs and 850,000 data 
triplets. 

 

Figure 2.23 We can expand the size of a data set, for ex-
ample, by taking all possible permutations taken two at a 
time (Data Pairs), three at a time (Triplets), and four at a 
time (Quadruplets).  Note that this is what would happen 
to the data coming from just a single paper. 

2-15 Organism Codes 

The many examples using data pairs indicate 
that biology uses a ratio rule to define the way 
it connects two parts.  Since connectivity is a 
universal property of a complexity, we can ex-
pect every part to belong to one or more ratios.  
Organism codes allow us to explore this idea by 
viewing all the relevant data and connections of 
a given paper simultaneously (Bolender, 2010).  
Figure 2.24 itemizes the steps used to generate 
the codes using triplet ratios. 

 

Figure 2.24 Published data can be transformed into tri-
plets and triplets into organism codes (From Bolender, 
2010). 

An organism code shows how data are con-
nected quantitatively (recall that we can com-
bine two or more ratios when they share the 
same part and ratio).  After generating more 
than 155 organism codes (Figure 2.25), it ap-
pears that a simple data pair represents only a 
very limited glimpse of a much larger connectiv-
ity (Bolender, 2010).  Moreover, biology uses its 
connections to build in an extensive redundancy 
within its hierarchy of size.  Apparently, once a 
set of design rules are in place, biology protects 
them by increasing the number of connections 
to a given part.  Redundancy suggests yet 
another first principle. 

The first example displays the organelles of the 
gastric parietal cell, which form a network of 
interconnections – based on the stoichiometry 
of its parts (Figure 2.25).  The lower panel of the 
figure summarizes the code as a string of ratios.  
In effect, the string represents a glimpse of 
biology’s rule for designing this type of cell.  
There is, however, another rule that comes into 
play when these cells are signalled to secrete 
hydrochloric acid (HCl) into the lumen of the 
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stomach.  This intermittent process requires a 
set of instructions – an algorithm - capable of 
moving large amounts of membrane from the 
cytoplasm to the cell surface and then trigging 
the release of HCl.  By reversing the direction of 
the process, the membrane moves back into 
the cell and the secretion of HCl diminishes. 

 

Figure 2.25 Organelles of the parietal cell in the human 
stomach display multiple connections.  Moreover, the 
connections combine to form a string of ratios (lower 
panel), which presumably reflects the biological rule for 
constructing parietal cells - nuc(1) :  cyma(10) : mito(10) : 
mivi(2) : mvb(0.4) : db(1) : calu(1) (Original data from 
Aase et al., 1976; From Bolender, 2010). 

To biology, any change represents a complex 
event because it involves many parts and con-
nections.  Organism codes, which allow us to 
follow these changes graphically, allow us to 
watch biology behaving as a complexity. 

Consider the next example shown in Figure 
2.26.  In going from health (normal) to disease 
(alcoholism, Alzheimer’s), notice how the den-
tate gyrus of the hippocampus relinquishes its 
position as a central organizing structure to the 
presubiculum and how the parts and connec-
tions change – sometimes quite dramatically.  In 
Alzheimer’s disease, the normal redundancy of 
the connectivity disappears altogether. 

 

 

 

Figure 2.26 Organism codes - based on triplets - charac-
terize the hippocampus in health (control: top) and dis-
ease (alcohol: middle, Alzheimer: bottom).  Notice how 
triplets detect changes in the complexity of the hippo-
campus, using the relationship of parts to connections 
(Original data from Harding et al., 1997; From Bolender, 
2010). 

By scanning through the collection of organism 
codes (Figure 2.25), distinct patterns begin to 
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appear.  Often, for example, the largest number 
of connections goes to a single part (node), 
which plays the role of a dominant central or-
ganizer.  Searching the database for parts dis-
playing this dominant behavior shows that the 
nucleus and mitochondrion assume this role 
most often (Figure 2.27).  This pattern of domi-
nance suggests a hierarchical control wherein 
cell parts tune their amounts most often with 
reference to nuclei and mitochondria.  Moreo-
ver, the data also indicate that a tight linkage 
exists between the mitochondrial and nuclear 
compartments.  One can imagine that such 
phenotypic patterns – or their antecedents – 
must be coded somewhere in the genome.  Al-
ternatively or additionally, self-organizing prin-
ciples and feedback loops may be in play.   

 

Figure 2.27 Dominant central organizers receive the larg-
est number of connections (From Bolender, 2010).  The 
tendency of cell organelles to key on the mitochondrion 
and nucleus may identify a first principle of cell design 
and dynamics.  

 

 

2-16 Fibonacci Numbers 

One of the best known patterns in nature is 
known as the Fibonacci series (0, 
1,1,2,3,5,8,…,n), wherein adjacent numbers are 
added - in order – starting with [0,1] and con-
tinuing from left to right.  This pattern of ar-
ranging parts occurs, for example, in DNA, flow-
ers, vegetables, fingers, faces, and spiral galax-
ies.  It also occurs in organism codes, most no-
tably in experimental setting when the parts 
undergo changes (Bolender, 2010).  Notice, 
once again, that the pattern relies on ratios of 
whole numbers. 

Move 12: Is there more than one way to 
detect biological changes? 

Throughout this chapter, we have changed our 
approach to detecting biological changes.  In-
stead of dividing an experimental data point by 
its control, we compared the patterns produced 
by control and experimental ratios.  This al-
lowed us to avoid the concentration trap (Fig-
ure 1.7) because creating a ratio from either a 
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concentration or an absolute value gives the 
same result – provided the rules are obeyed 
(Figure 2.28).  Even the seemingly amorphous 
clouds of data points we attribute to biological 
variation condense into highly ordered equa-
tions when we choose to interpret these same 
data points as ratios (e.g., Figure 2.12). 



Figure 2.28 Forming a ratio of concentrations is equiva-
lent to forming a ratio of absolute values, provided the 
concentrations share the same reference space.  Using 
the concentration trap work screen (Figure 1.7), a repre-
sentative sample of data points (200) was taken, 
formed into ratios, and plotted.  Notice the observed (Y= 
1.001 + 0.0025) and expected (Y=X) equations are virtual-
ly identical.      

Shifting from isolated points to ratios, however, 
is not without consequences.  Statistical tests, 
for example, have close ties to the reductionist 
model and often depend importantly on distri-
butions of isolated data points.  Detecting a sig-
nificant difference by comparing distributions 
involves a very different technology from the 
one needed to compare one pattern to another.  
A pattern either exists or not – period.  Alt-
hough biological variation can still exist within a 
ratio, it is being buffered by storing the data in 
decimal bins.   

 

2-17 Summary of Chapter 2 

Chapter 2 introduces ratios as the primary data 
type in an emerging theory structure based on 
biological complexity.  These ratios direct our 
attention toward discovering mathematical pat-
terns created by large amounts of connected 
data and away from comparing single data 
points to look for significant differences.  In ef-
fect, we are learning how to construct and in-
terpret mathematical phenotypes.    

A data pair defines a fundamental unit of bio-
logical complexity as a quantitative connection 
(ratio) existing between the values of two 
named parts.  This union cannot be broken 
down into simpler components without loosing 
the complex properties derived from the rela-
tionship.  As a basic building block of complexi-
ty, data pairs can form strings, modules, and 
networks of data that capture and define com-
plexity by rule.        
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Chapter 3 

Game 3 – Creating a Parallel Complexity 

 

In this the third game, we introduce the con-
cept of a parallel complexity – a collection of 
ratios expressed as mathematical markers that 
will serve as a proxy for biology.  To assure that 
this proxy is as close to the original biology as 
possible, we will rely exclusively on data coming 
from living subjects.  Moreover, we will begin to 
understand why it takes a complexity to study a 
complexity. 

Game 3 begins by replacing the post-mortem 
playing fields of game 2 with living ones.  This 
requires a new database populated with MRI 
data (see, for example, Keller and Roberts, 
2009) collected from the brains of living pa-
tients.     

 

Figure 3.1 Extracting a phenotype from the biology litera-
ture requires a strategy driven by complexity theory.   

To this end, we will begin with a paper that 
used MRI to estimate the volumes of 42 parts in 
the brains of normal and schizophrenic patients 
(Goldstein, et al., 1999).  Since more than 97% 
of the data pairs formed triplets, the size of the 

original data set increased from 42 parts to 
more than 2,000 ratios.  To accommodate the 
size of this new playing field, we will turn to 
Mathematica (Wolfram Research, Inc.) for help 
with the calculations and graphics.  We begin by 
mapping the parts of the brain mathematically.          

Move 13: Can we map parts of the living 
human brain mathematically? 

3-1 Mathematical Mapping 

Mathematical mapping extends the reach of the 
organism codes described in section 2-15 by 
assembling a data set from all hierarchical lev-
els.  Moreover, by presenting the relationship of 
parts to connections visually, we can begin to 
grasp the magnitude of a complexity and be-
come accustomed to viewing widespread 
changes in large patterns.        

Figure 3.2 illustrates a mathematical map of the 
cerebral cortex of control subjects, wherein 42 
parts (blue dots) display an astonishing number 
of connections (red lines).  The figure begins to 
explain how biology uses it parts and connec-
tions to design the brain according to a set of 
well-defined rules (Bolender, 2011).  By map-
ping all 42 parts simultaneously, we begin with 
a global view of the human cerebral cortex as a 
complexity, which we will then unfold progres-
sively to discover local patterns and hidden re-
lationships.    
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Figure 3.2 A mathematical map of the normal human 
cerebral cortex derives from forty two parts displaying 
thousands of connections (Adapted from Goldstein et al., 
1999; From Bolender, 2011).  If, for example, we change 
just one part, what happens to all the rest?  Finding an 
answer to such a question requires a collaboration be-
tween biology and the biology literature.  The parts (blue 
dots) include: angular gyrus, basal forebrain, central 
operculum, cerebral cortex, cingulate gyrus, cuneus, 
frontal lobe, frontal operculum, frontal pole, frontomedi-
al cortex, frontoorbital cortex, fusiform gyrus oclo, fusi-
form gyrus telo, heschl gyrus, inferior frontal gyrus, infe-
rior temporal gyrus, insula, lingual gyrus, medial paralim-
bic cortex, middle frontal gyrus, middle temporal gyrus, 
occipital lateral gyrus, occipital lobe, occipital pole, 
paracingulate cortex, parahippocampal gyrus, parietal 
lobe, parietal operculum, planum polare, planum tem-
poral, postcentral gyrus, precentral frontal gyrus, precu-
neus, subcallosal cortex, superior frontal gyrus, superior 
parietal lobule, superior temporal gyrus, suppl motor 
cortex, supramarginal gyrus, telencephalon, temporal 
lobe, and temporal pole. 

We begin the unfolding process by taking a 
closer look at the annular gyrus of the cerebral 
cortex.  It can be isolated from Figure 3.2 and 
displayed with its parts (blue) and connections 
(red), as shown in Figure 3.3.  Note that the 
topmost blue dot in the figure represents the 
angular gyrus.  One is struck by the fact that a 
single biological part can be connected to so 
many other parts.  In fact, all the original 42 
parts are connected.       

 

 

Figure 3.3 The mathematical map identifies the parts and 
connections of the angular gyrus in the normal human 
cerebral cortex.  Note that all 42 parts are connected 
(Adapted from Goldstein et al., 1999; From Bolender, 
2011). 

Next, if we plot the two-dimensional map of 
Figure 3.3 in three dimensions (Figure 3.4), the 
underlying unit structure of the cortex appears 
as a collection of parts and connections forming 
triangles.  Such triangular patterns often appear 
in biology (Bolender, 2010).  Hagmann et al. 
(2008), for example, using physical mapping 
methods also found a similar triangular pattern 
in the human brain.  This reappearing triangular 
pattern of connectivity suggests a modular de-
sign strategy may be in play.        

 

Figure 3.4 The 3D plot shows how 42 parts of the normal 
human cerebral cortex are interconnected (From 
Bolender, 2011). 
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From where do the connections come?  Figure 
3.5 shows the original 42 parts isolated accord-
ing to the methods of reductionism.  However, 
these parts still relate to one another by rule 
(stoichiometry), which, in this case, remains 
intact as volume ratios (Bolender, 2011).  Since 
the parts define the ratios and the ratios the 
connections, we can recover a key element of 
complexity otherwise lost by our reductionist 
methods.  Figure 3.5 becomes Figure 3.4 and 
then Figure 3.2.              

 

 

Figure 3.5 The original data set of the normal cerebral 
cortex included 42 isolated data points expressed as vol-
umes (Adapted from Goldstein, et al., 1999; From 
Bolender, 2011).    

3-2 Diagnostic Patterns 

Complexity offers a remarkable flexibility in the 
way we view biological change.  Instead of look-
ing for changes in just a few parts, we can now 
explore local and global patterns consisting of 
many parts and connections.   

We can compare, for example, the frontal pole 
in normal individuals to those with schizophre-
nia (Figure 3.6).  In the original study, no change 
was reported (Goldstein, et al., 1999).  When 
viewed as a complexity, however, a distinct pat-
tern of change becomes immediately apparent 
(Bolender, 2011).  Schizophrenia produces dra-
matic changes in the connectivity of the parts 

throughout the brain (Figures 3.6 – 3.8).  In such 
cases, the images become diagnostic of the dis-
order.    

 

Normal Patients 

 

Patients with Schizophrenia 

 

Figure 3.6 In schizophrenia, the relationship of parts to 
connections in the human frontal pole undergoes nu-
merous changes (Adapted from Goldstein et al., 1999; 
From Bolender, 2011). 

 

Figure 3.7 The frontal pole data of Figure 3.6 can also be 
plotted in three dimensions and rotated to view the 
changes in parts and connections (Adapted from Gold-
stein et al., 1999; From Bolender, 2011).  By mapping - 
individually - all 42 parts of the cerebral cortex, we obtain 
a library of images for schizophrenia – one that offers a 
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comprehensive and perhaps more realistic view of this 
disorder as a complexity (see Appendix, Bolender, 2011).  

Although complex patterns lend themselves to 
a graphical analysis, the results of mathematical 
mapping can also be expressed as equations 
(Figure 3.8).  For example, the equation for 
schizophrenia (dotted red line) in the cerebral 
cortex fits a polynomial equation (y = 0.0485x2 - 
4.3726x + 98.06 with an R2 of 0.9854.  Notice 
that it appears distinctly different from the cor-
responding control curve (y = 0.0315x2 - 3.4193x 
+ 87.57; R² = 0.9854).      

 

Figure 3.8 Diseases such as schizophrenia can be ex-
pressed as a polynomial equation (dashed red line), 
which can be distinguished from the one of normal pa-
tients (solid blue line) (From Bolender, 2011). 

 

If we can map the complexity of a brain by using 
its parts and connections to characterize a phe-
notype, then it should also be possible to create 

mathematical markers having diagnostic prop-
erties.  This defines our next move. 

Move 14: Can we diagnose disorders of the 
living human brain using mathematical 
markers? 

3-3 Game Changer 

At this point in the game, everything changes 
because we can now explore biology for the 
first time as a single complexity – a biology un-
compromised by distortions of a post-mortem 
biology (Figure 3.1).  This fortunate situation 
derives entirely from the online publication of 
the Internet Brain Volume Database (IBVD; 
Kennedy, et al., 2012; Poline et al., 2012).  This 
splendid collection of published studies includes 
data from patients displaying a wide range of 
disorders - all of which translate into the uni-
versal data type of a parallel complexity – the 
mathematical marker.   

3-4 Mathematical Markers 

A mathematical marker has two components - 
the names of parts and their numerical values.  
Since we will be using triplets, the marker con-
sists of a six character string (AX:BY:CZ) calcu-
lated as a ratio wherein X=1.  It includes three 
named parts (A, B, C) with their corresponding 
numerical values (X, Y, Z).  Markers capture the 
parts and connections of a phenotype locally 
and globally – within and across all levels of the 
biological hierarchy of size.  For our purposes 
here, we will be using it as our basic unit of 
complexity.  

Nested complexities, which exist throughout 
biology, can be managed effectively by translat-
ing dissimilar data sets into a single table of sim-
ilar mathematical markers.  This identifies a so-
lution to the problem of integrating the wide 
range of existing biological data types.  In effect, 
mathematical markers allow us to reconstruct 
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biology as a complexity using data from the bi-
ology literature.          

Mathematical markers can be produced two 
ways, one way is hard the other easy.  The hard 
way includes generating triplets individually by 
comparing data pairs (Figure 2.24).  Although 
this approach works for relatively small data 
sets, it becomes impractical for large ones.  
Since we know empirically that roughly 84% of 
all the data pairs in our database form triplets 
(Bolender, 2012), it becomes easier just to 
transform all the data directly into triplets – one 
paper at a time. 

This process includes the following steps.  After 
entering the names of the parts from a given 
paper as a string (A, B, C … N) into Mathematica 
(Wolfram Research), the program returns a list 
of all possible triplets - taking N parts three at a 
time.  Next, the list of names is copied to an 
Excel spreadsheet where their numerical values 
are entered, used to calculate ratios, and as-
signed a decimal repertoire value.  The final 
step consists of copying all the data from indi-
vidual papers to a single spreadsheet, saving it 
as a text file, and importing the file into the ta-
ble of a relational database.   

When dealing with large data sets, a spread-
sheet works best for data entry, whereas the 
database excels at finding complex patterns in 
large data sets.  For further details of data en-
try, see Bolender (2012). 

3-5 Diagnosing Disorders of the 
Brain (Shared Markers) 

A clinical diagnosis identifies abnormalities in 
the phenotype, which - at any point in time - 
represents the current state of an individual.  
When, however, the symptoms and measures 
of one abnormality overlap those of others, a 
diagnosis depends on reconciling a combination 
of objective, subjective, and conflicting infor-
mation.  The unhappy consequence for the pa-
tient is that two or more well-qualified physi-

cians may view the same information and come 
to different conclusions.  For brain disorders, 
getting to the correct diagnosis typically in-
volves a lengthy and complicated process.          

If instead, we treat the patient as a complexity, 
diagnosis becomes the product of a rule-based 
protocol.  Mathematical markers provide this 
objective approach to diagnoses because we 
can design them to phenotype patients in 
health and disease.  Since the IBVD provides 
access to the MRI data of at least 67 publica-
tions, we can generate more than 700,000 
markers to capture the complexity of the phe-
notype in bewildering detail (Bolender, 2012). 

We will discover in this chapter that diagnosing 
disorders of the brain objectively requires a 
large and representative database of standards, 
accompanied by a carefully crafted strategy for 
dealing with false positives and negatives 
(Chapter 5).  To begin, we need to assemble a 
diagnostic tool for brain disorders, one that will 
allow us to run unknowns against known stand-
ards.  A standard represents a set of markers 
known to be associated with a given disorder.  
For the examples included herein, the un-
knowns used for the test will come from publi-
cations not included in the diagnosis database 
of standards.   

Performing a diagnosis consists of running the 
mathematical markers of an unknown disorder 
against a panel of standards (consisting of 24 
known disorders) and tallying those that match 
(standard=unknown).  The standard with the 
largest number of matches to the unknown 
markers is given the diagnosis (Figure 3.9).  Alt-
hough this approach worked successfully when 
applied to a small number of selected test cas-
es, exhaustive testing was impractical because 
all the scoring was done manually (Bolender, 
2012).  In Chapter 5, we will automate this test-
ing procedure, revisit the diagnosis problem, 
and test it rigorously.           
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Figure 3.9 Mathematical markers use technology to diag-
nose unknown disorders of the brain objectively.  Top: 
The diagnostic procedure consists of mixing the markers 
of 24 known disorders (blue) with markers coming from 
an unknown disorder (red) and checking off duplicates 
that occur between known and unknown markers.  Bot-
tom: After identifying all the duplicates, clicking on the 
analysis button summarizes the results.  The disorder 
with the largest number of hits becomes the diagnosis 
(From Bolender, 2012). 

Our immediate concern here will be to flesh out 
the characteristics of the diagnostic method by 
inspecting the patterns of individual disorders.  
Examples will include the bipolar disorder, Alz-
heimer’s disease, and autism. 

Bipolar Disorder: Mathematical markers pro-
vide new and sometimes surprising insights into 
the properties of brain disorders.  When com-
pletely unfolded into a collection of markers, a 
given disorder shares many of its markers with 
those of other disorders.  This pattern is seen in 

a snapshot of a diagnostic table (Figure 3.10), 
summarized graphically as a histogram in Figure 
3.11, and plotted as an equation in Figure 3.12.  
The unknown disorder was diagnosed correctly 
as bipolar (Figure 3.11). 

 

Figure 3.10 Notice that the same marker (e.g., 1:6:3 and 
1:6:4) can apply to more than one disease.  Bipolar, alz-
heimer, and unknown all share the same mathematical 
marker (amygdalaright1putamen6putamenleft3) having 
the ratio 1:6:3 (From Bolender, 2012).     

Figure 3.11 The histogram itemizes the disorders that 
share mathematical markers with the unknown, which 
was diagnosed correctly as bipolar.  Bipolar disorder had 
712 markers of which 401 (56.3%) were uniquely bipolar.  
The remaining 311 markers were shared with other dis-
orders (From Bolender, 2012).  
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Figure 3.12 Disorders sharing mathematical markers with 
bipolar disorder fit an exponential equation, suggesting 
that mathematical markers might allow us to character-
ize a disorder with an equation.  Since each disorder typi-
cally displays a range of values as it progresses, tracking 
this behavior with equations may offer a convenient di-
agnostic tool (From Bolender, 2012).  Confidence in such 
equations will increase as the R

2
s approach 1.0.       

Alzheimer’s Disease: Notice that the mathe-
matical markers of Alzheimer’s disease (Figure 
3.13) display a pattern of overlapping markers 
analogous to the one displayed in Figure 3.11.  
The disease, which carries 3,515 unique mark-
ers, shares 878 of its 4392 markers with 12 oth-
er disorders – from bipolar (606) to epilepsy (1).  
This pattern of sharing mathematical markers 
appears to occur throughout all brain disorders 
and may help to explain the difficulty encoun-
tered when using symptoms to make a diagno-
sis. 

  

Figure 3.13 Many disorders share the same mathematical 
markers with Alzheimer’s disease.  Of the 4392 markers 
for Alzheimer’s disease, 3514 (82%) are unique, whereas 
606 (11%) are shared with bipolar disorder, 121 (2%) with 
major depressive disorder, 115 (2%) with borderline per-
sonality disorder, and 58 (1%) with ADHD.  Note the loga-
rithmic scale of the Y-axis (From Bolender, 2012). 

Autism: Visualizing change in a complexity cre-
ates a challenge because it is so pervasive.  Part 
of our job, therefore, becomes one of devising 
new ways of observing changes in patterns 
when large numbers of parts are involved – of-
ten numbering in the tens of thousands or mil-
lions.  

Recall that when generating the ratios of math-
ematical markers (AX:BY:CZ), all the values are 
divided by X to set the value of X equal to 1.0.  
This allows us to plot mathematical markers as 
scatter plots with the two remaining variables 
(Y and Z).  By preparing plots for normal and 
disease states and then flipping back and forth 
between the images, one discovers a spectacu-
lar amount of change.  Entire clouds of points 
shift in and out.  The massive change that oc-
curs in a large data set appears at first surpris-
ing and then somewhat frightening in that it 
shows us how change actually operates in a 
complexity.  Our current practice of following 
the behavior of only a few variables at a time 
would seem to miss the reality of the big pic-
ture all together.   

Figure 3.14 illustrates autism as a complex 
change by superimposing control (yellow) and 
experimental (blue) scatterplots, wherein over-
lapping data points appear green.  The log-log 
plot - used to spread out the data - reveals an 
extensive pattern of change associated with 
autism.  Notice that in this comparison of nor-
mal patients (yellow) to those with autism 
(blue), the blue points (autism) can move in-
ward, outward, or stay the same.  When the 
marker remains unchanged, it appears green 
(yellow + blue).   
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Figure 3.14 Key: Autism (blue), Normal (yellow), overlap 
(green).  Compared to the normal, autism is characterized 
largely by a contraction of the point set (inward move-
ment – yellow to blue).  However, examples of an outer 
movement and of no movement (complete green squares 
- overlap of blue and yellow) also appear in an animation. 

Although mathematical markers offer an objec-
tive approach to diagnosis, we have not yet 
recognized or dealt with the problem of false 
positives and negatives.  This will be done in 
Chapter 5.  We did learn, however, that a con-
siderable overlap exists between the markers of 
different disorders.  This finding takes us one-
step closer to understanding the disease pro-
cess.   

 

Since our current MRI playing field provides a 
rich collection of both local and global patterns, 
we can begin to look for generalizations.  In the 
next move, we will start this process by unfold-
ing phenotypes into mathematical markers to 
get a closer look at the way the brain assembles 
disorders.           

Move 15: Do disorders of the brain derive 
from a common design plan? 

Using mathematical markers derived from MRI, 
we can isolate, analyze, and compare the com-
plexity of disorders one on one or as an entire 
group.  We can do this because living systems 

display a remarkable property - the same pat-
terns seen locally also appear globally.   

Although forming ratios appears to minimize 
the effects of bias and animal variation, the 
power of MRI data derives from the fact that 
most of its complexity comes from biology.  
Were this not the case, then we would not ex-
pect to see such widespread agreement be-
tween local and global markers.  This tells us 
that data collected from living individuals can 
serve as a gold standard to which all other data 
types can be compared.   

In short, creating our parallel complexities with 
MRI data simplifies our job enormously because 
dealing with one source of complexity is much 
easier than dealing with two (Figure 3.1).          

3-6 Generalizing Disorders 

We know that biology defines itself as a com-
plexity, one that we can unfold into connected 
parts using mathematical markers.  In turn, the 
order given to our parallel complexity by these 
markers advances our level of play to that of 
pursuing generalizations related to the disease 
process.     

Each disorder of the human brain carries a dis-
tinctive set of markers.  However, as shown in 
Figures 3.11 and 3.13, the same marker can ap-
pear in more than one disorder.  This means 
that the complexity of a disease depends on 
several factors, including the composition of 
individual markers, the presence or absence of 
specific markers, and the total number of mark-
ers in play.  By unfolding each disorder into a 
collection of well-ordered and clearly identified 
markers, we can define it as a unique pheno-
type.    

A table of parts cross-correlated with disorders 
begins the process of generalizing the design 
strategy exercised by biology in the brain (Fig-
ure 3.15).  Notice that specific parts define a 
disorder, that different disorders often share 
the same parts, and that a relatively small num-
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ber of parts (35/185 or 19%) accounts for most 
of the disorder.  Schizophrenia (26 parts) and 
bipolar disorder (20 parts) seem to create the 
most damage, whereas the amygdala (13), cau-
date (13), hippocampus (10), putamen (10), and 
thalamus (9) appear most vulnerable.    

 

Figure 3.15 The table summarizes the involvement of 
specific parts in 21 different disorders of the human 
brain.  Read the blue squares by row to identify the in-
volvement of a given part in a disorder and the blue 
squares by column to identify the parts responsible for a 
given disorder. These data come from the diagnosis da-
tabase (From Bolender, 2012).  

3-7 Playing the Disorder Game 

Figure 3-15 suggests that biology assembles 
disorders by mixing and matching parts from a 
common pool of resources.  As a complexity, 
living things seem to be the product of a nature 
that likes to build things from well-defined sets 
of parts, be they normal or abnormal.     

By expressing the relationship of one disorder 
to another graphically, we can begin to tease 
out some of the details of this modular strategy.  

Consider schizophrenia.  It represents the most 
extensive departure from the norm in that it 
carries at least 123 abnormal markers (Figure 
3.16).     

 

 

Figure 3.16 Schizophrenia results from the disruption of 
at least 123 parts of the brain (From Bolender, 2012).  
Enlarge as needed or view the originals on the internet 
(enterprisebiology.com).   

Notice what happens when we add 14 other 
disorders to the plot of Figure 3.16.  Although 
schizophrenia remains dominant with its 123 
parts and connections, it shares many of its 
parts (30%) with other disorders (Figure 3.17).  
One unexpected finding is that the parts and 
connections of six individually recognizable dis-
orders are identical to those of schizophrenia. 
What might this mean?  If a program for schizo-
phrenia exists, is it read only partially to pro-
duce one of these six disorders or is schizo-
phrenia the accumulation of many different 
disorders?  Such questions, of course, go to the 
heart of the disease process.  
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Figure 3.17 Disorders of the brain share many similar 
parts and connections (From Bolender, 2012).  Enlarge 
the image to view details. 

When we plot just schizophrenia, bipolar disor-
der, and ADHD, the complex relationship of one 
disorder to another becomes more apparent.  
Bipolar disorder and ADHD occur as a distinct 
subset of schizophrenia in that they share 80% 
of the same parts and connections.  Moreover, 
a relationship exists between bipolar disorder 
and ADHD in that they share roughly 25% of the 
same parts and connections.  

 

Figure 3.18 ADHD and bipolar disorder share many iden-
tical parts and connections with schizophrenia, as well as 
with each other (From Bolender, 2012).  Enlarge as need-
ed. 

This pattern of a close relationship between 
disorders (Figure 3.18) persists as a general pat-
tern.  Figure 3.19, for example, shows the rela-
tionship of bipolar disorder to Alzheimer dis-
ease.  They share 9 of 25 (36%) parts and con-
nections. 

 

Figure 3.19 Bipolar disorder and Alzheimer disease share 
similar parts and connections (From Bolender, 2012).  

This generalization also exists quantitatively 
(Chapter 6).  Different disorders of the brain 
share not only parts and connections, but also 
identical mathematical markers.  In effect, evi-
dence that biology constructs normal and ab-
normal brains as complexities based on well-
defined relationships of parts to connections 
continues to accumulate.   

Apparently, biology is playing complexity games 
with its parts and connections to produce dif-
ferent brains with different properties.  Some-
times this strategy gives us normal individuals, 
other times we get geniuses, savants, and great 
artists.  Other times it produces disorders with 
harmful consequences.  Mathematical markers 
tell us that all brains share a common design 
strategy, but that specific disorders resemble 
recipes in that they consist of well-defined pop-
ulations of shared and unique components.   

Given what we have learned thus far, studying 
individual disorders within the context of all 
disorders may be a more effective way of ad-
vancing our understanding.  If, for example, we 
can induce an abnormal marker to revert to a 
normal one, then that solution might also apply 
to a host of other disorders.  As we discovered 
earlier with the lateral geniculate nucleus (Fig-
ure 2.13), even a small change in the genome 
can trigger global consequences.       
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3-8 Summary of Chapter 3 

In chapter two, we explored ways of looking at 
biology as a complexity by folding and unfolding 
biological parts and connections mathematical-
ly.  The resulting patterns told us that biology 
orders itself by creating and maintaining pro-
portions of one part to another.  This offered us 
assurance that biology exists as a rule-based 
system, one that we could read and interpret 
mathematically.   

The central point to emerge from Chapter 3 is 
that it takes a complexity to understand a com-

plexity.  This basic principle translates into a 
parallel complexity, which becomes a playing 
field designed according to rules consistent with 
those of biology.  Since biology runs a consider-
able portion of its complexity business with ra-
tios, we profit by running our parallel complexi-
ty business in exactly the same way.     

By shifting to the MRI data of living subjects, 
new playing fields allowed us to map portions 
of the human brain mathematically and to 
begin the process of figuring out how to diag-
nose disorders of the brain objectively.   

An especially important finding to emerge from 
the MRI data was that patterns can become 
global and lead directly to biological rules and 
generalizations.  By learning how to read biolo-
gy mathematically, different investigators inter-
acting with different patients in different set-
tings can now expect to find similar patterns 
when the same rules are in play.  In other 
words, diagnosis becomes an exercise in access-
ing a phenotype objectively.       

In chapter 4, we start a new game based on 
what we have learned thus far.  The point of the 
game will be to explore the relationship of the-
ory structure to scientific results.  It will allow us 
to run a reality check on our current research 
model.   
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Chapter 4 

Game 4 – Reconciling Differences

As a complexity, biology displays the expected pat-
terns and behaviors of a rule based system.  How-
ever, there is a problem.  We remain committed to 
the widely held view that both living and nonliving 
states of biology yield similar data and information.  
If untrue, then interpreting research based on post-
mortem material becomes problematic – especially 
for those studies dependent on detecting biological 
changes.  This puts us in the difficult position of hav-
ing to play a far riskier game in Chapter 4 – one with 
potentially far-reaching consequences. 

Implicit in reductionist theory when applied to biol-
ogy is the assumption that data coming from parts 
represent valid measures of biology, even when 
sampled post-mortem.  Since we now have access 
to data coming from the same parts in living (IVBD) 
and post-mortem (Stereology Literature Database) 
brains, we will use this chapter to test this assump-
tion and attempt to reconcile any differences we 
find.    

Move 16: Can post-mortem data diagnose a 
disorder of the brain (schizophrenia) correctly 
– using mathematical markers? 

4-1 Diagnosing Disorders Post-
mortem 

Given the assumption of data compatibility stated 
above, our ability to diagnose disorders in the 
brains should extend to both living and post-
mortem brains.  If not, then reductionist theory will 
have failed to withstand the challenge instigated by 
the move.               

The first test consists of running post-mortem 
markers for schizophrenia (unknowns) against a 
comparable set of markers taken from living pa-
tients (knowns).  Figure 4.1 indicates that the post-
mortem data clearly missed the correct diagnosis of 

schizophrenia, giving it instead to the bipolar disor-
der.  Consequently, the results do not support the 
assumption of data equivalence.  Moreover, the 
ensuing tests all lead to the same disappointing 
conclusion.      

 

Figure 4.1 When unknown mathematical markers taken from 
post-mortem brains (stereology) were run against those of 
living brains (MRI), the resulting diagnosis (bipolar) was incor-
rect.  The correct diagnosis - schizophrenia – was not even 
close.  Apparently, living and non-living brains are very differ-
ent quantitatively.  Notice that relatively few markers were in 
play (From Bolender, 2013).   

The next example attempted to make the test easi-
er to pass by reducing the triplet markers 
(AX:BY:CZ) to data pairs (AX:BY).  This gave a better 
outcome, but the results were too close to call.  
Figure 4.2 indicates that the diagnosis went to both 
schizophrenia and Alzheimer’s disease with bipolar 
running a close second.  In effect, the unavoidable 
conclusion to come from the tests thus far is that 
post-mortem brains no longer have many of the 
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quantitative patterns found in living brains 
(Bolender, 2012). 

 

Figure 4.2 Using mathematical markers based on data pairs, 
post-mortem data still could not diagnose the unknown as 
schizophrenia.  Schizophrenia tied with Alzheimer disease 
(From Bolender, 2013). 

Had the diagnosis been successful, what pattern 
should have appeared in Figure 4.2?  We would ex-
pect the histogram to resemble the distribution of 
data pair markers displayed by the living brain (Fig-
ure 4.3).   

 

Figure 4.3 The MRI data of living brains provided 1287 math-
ematical markers for schizophrenia – based on data pairs 
(AX:BY).  Notice that of these 1287 markers, 757 were shared 
with bipolar, 347 with Alzheimer, and 285 with major depres-
sive disorder (From Bolender, 2013). 

 

If living and post-mortem brains show little compat-
ibility between their mathematical markers, then 
extensive and unequal changes must have occurred 
to the volumes of the parts post-mortem.  Such a 
finding puts at risk our assumption that we can 
gather biologically relevant information – as vol-
umes or as data related to volumes - from post-
mortem material.  The next move will attempt to 
determine what happens to biological parts post-
mortem.         

Move 17: Can we determine the extent to 
which the parts of post-mortem brains differ 
from those of living brains? 

4-2 Global Patterns in Normal 
Brains 

When the same patterns occur across publications, 
they qualify as being global.  Counts of duplicate 
(shared) mathematical markers in a database table 
– derived from different publications - serve to 
identify and measure of the persistence of a given 
global pattern.   

By counting duplicate markers in control data sets 
coming from living and post-mortem brains sepa-
rately, we can estimate the amount of information 
lost post-mortem.  Markers are identified as dupli-
cates when they appear in at least two publications, 
but for our purposes here, a given duplicate marker 
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is counted only once - even if it has many more cop-
ies.    

Figure 4.4 shows that in making the transition from 
living to post-mortem, normal human brains expe-
rience a substantial loss in global properties.  The 
analysis included 160,736 markers for MRI, of which 
17,048 (10.6%) were duplicated in more than one 
paper.  In contrast, the post-mortem data of stere-
ology had 53,298 markers, of which 1,060 (2%) 
were duplicates.  This tells us that the expected 
consequence of collecting data from post-mortem 
brains is an 81% loss in the information we would 
need to study the brain as a complexity. 

 

Figure 4.4 In the MRI database, living brains – across publica-
tions - displayed a global pattern as suggested by the almost 
11% incidence of duplicate mathematical markers.  In con-
trast, this measure in post-mortem brains of the stereology 
database was only 2%. This difference sugggests an 81% loss 
of information - ((1-(2%/10.6%))x100%=81%) (From Bolender, 
2013).   

One of the most striking observations to come from 
living brains is that a given mathematical marker 
can appear routinely in many different publications 
(Bolender, 2012).  However, Figure 4.4 suggests that 
this global property of markers in living brains all 
but disappears in post-mortem brains (Figure 4.4).   

4-3 Disrupted Global Patterns in the 
Brain 

Schizophrenia disrupts the patterns of a normal 
brain, as illustrated in Figure 3.16.  We can evaluate 
the extent of this disruption – in living and post-

mortem subjects - by comparing the mathematical 
markers of the normal and abnormal brains.   

In the schizophrenic brain, markers either remained 
the same as the controls (duplicate) or changed 
(nonduplicate) (Figure 4.5).  By tallying the duplicate 
and nonduplicate markers, we can quantify the ef-
fect of schizophrenia on the living brain with one 
complexity (living brain) in play and on the post-
mortem brain with two complexities in play (living 
brain + post-mortem artifacts).   

 

Figure 4.5 Schizophrenia changes quantitative patterns in the 
human brain by transforming duplicate markers into nondu-
plicates.  Duplicates occur when the control and experimental 
markers are the same, indicating no change.  In the living 
brain, schizophrenia decreased the percentage of duplicates 
to 44.82%, whereas in post-mortem brains the value fell to 
30.60% (From Bolender, 2013).  In the absence of post-
mortem artifacts, both data sets – MRI and stereology -would 
be the same.  

Figure 4.5 indicates that schizophrenia disrupts 55% 
of the markers in living brains, but this value climbs 
to 69% post-mortem.  This takes us to a key point.  
The mathematical markers detecting changes in 
patterns post-mortem are likely to carry one set of 
distortions for normal brains and a different set for 
abnormal brains.  This variability in the magnitude 
and direction of the post-mortem complexity intro-
duces mathematical inconsistencies between the 
data sets of living and post-mortem brains, as seen 
in Figure 4.5.  Were this not the case and both nor-
mal and abnormal brain suffered the same volume 
distortion, then both histograms would be the 
same.  Obviously, they are not.     
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Next, we will consider the source of the artificial 
complexity (post-mortem artifacts). 

4-4 Artificial Complexity 

The artificial complexity includes all the post-
mortem changes attributed to death and experi-
mental methods.  Although widely recognized, the 
conventional wisdom – stated or implied – prefers 
the view that such distortions play a minor or insig-
nificant role and can be ignored.  Consequently, 
most publications – including those that include 
stereological methods - do not include corrections 
for the artificial complexity.  Since all the evidence 
presented thus far runs contrary to this convention-
al wisdom, we will continue the testing by compar-
ing the markers of living and post-mortem brains. 

Schizophrenia will serve as our next test case.  The 
combined data pairs of the stereology and MRI da-
tabases gave 46,246 mathematical markers, which 
included control and experimental (schizophrenia) 
values for both volumes and numbers.  Of this total, 
33,130 markers were duplicates - 5,814 came from 
stereology and 27,316 from MRI.  Of this group 
2,763 duplicates were shared by the two data 
sources (stereology = MRI) with 709 coming from 
stereology and 2,054 from MRI.  For volumes (ste-
reology = MRI), the controls accounted for 156 du-
plicates and the experimentals 107.  For details, see 
Bolender 2013. 

Figure 4.6 summarizes these results.  The compati-
bility between the stereology and MRI markers was 
only 5.6% for controls and 3.9% for experimentals.  
If, instead, we divide by 33,130 instead of 2,763, we 
get 0.5% for controls and 0.3% for experimentals.  
Once again, the mathematical markers show that 
living and post-mortem brains represent two very 
different structures quantitatively. 

 

Figure 4.6 Just a small percentage of the post-mortem mark-
ers of stereology duplicate those in the living brain.  Normal 
patients (control) are compared to those with schizophrenia 
(experimental).  Since living and post-mortem brains define 
distinctly different phenotypes, they represent largely incom-
patible data sets (From Bolender, 2013). 

If we view the compatible data set (5.6% and 3.9%) 
of Figure 4.6 with connectivity plots, the nature of 
the volume disruptions becomes apparent.  Notice 
how the connectivity of the controls (Figure 4.7) 
largely disappears in brains with schizophrenia (Fig-
ures 4.8). 

 

Figure 4.7 In the normal brain, these parts (represented by 
blue dots) form duplicate (identical) markers in both living and 
post-mortem brains.  Evidence for a partial loss of connectivi-
ty appears as three isolated groups in the lower portion of the 
figure (From Bolender, 2013).  
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Figure 4.8 In brains diagnosed for schizophrenia, these parts 
(represented by blue dots) form duplicate markers in both 
living and post-mortem brains.  Notice that the pattern of 
connectivity seen in the normal (Figure 4.6) has degraded to 
eight disconnected groups - most of which include subsets of a 
given part.  This figure helps to explain why the post-mortem 
data of stereology lack the critical information needed to di-
agnose disorders of the brain (Move 13).  The distortions in 
volume have largely overshadowed the original biological 
complexity (From Bolender, 2013). 

 

4-5 Reality Check 

Since living brains tell us one thing and post-
mortem something else, we face a worst-case sce-
nario.  In post-mortem brains, the volume of each 
part may have increased (swollen), decreased 
(shrunken), or remained the same.  Besides, the 
same part may distort differently in normal and ab-
normal brains.  Given such a scenario, the standard 
stereological method of calculating absolute values 
with hierarchy equations - which typically ignores 
such distortions, may be introducing important er-
rors – perhaps more often than not.  

Whenever stereological data collected from post-
mortem brains carry two distinct complexities, one 
attributed to biology and the other to experimental 

methods, our data and interpretations can become 
ambiguous, confusing, and unreliable.  Since we 
have been operating within this altered reality for 
some time, our options are limited.  We can either 
restrict our data to volume independent estimates 
(fractionator-based cell counts), or figure out how 
to fix the problem.      

Consider, for example, the situation that exists to-
day in the neurosciences community.  Data can 
come from two irreconcilable data sources, both of 
which share the same origin – the living brain.  
However, we routinely treat both data sets inter-
changeably, as if they were equal.  This puts our 
goal of understanding the brain directly in conflict 
with our current policy for interpreting data.  A best 
practices approach to this problem would be to 
reconcile the inconsistency by bringing both data 
sets into agreement.  Otherwise, we face the un-
welcome task of trying to defend a clearly indefen-
sible position.  To this end, move 17 discusses sev-
eral approaches to this dilemma. 

Move 18: If mathematical markers carry vol-
ume distortions, can we identify them and ap-
ply corrections? 

Finding solutions to the problems created by vol-
ume distortions becomes an ongoing exercise, one 
that will require access to large amounts of pub-
lished data and guidelines coming from the stereol-
ogy community.  The correction methods described 
below rely on the best data currently available. 

4-6 Corrections for Post-mortem 
Data 

The purpose of the following methods is to return 
post-mortem values to those that exist in the origi-
nal, living material.  In effect, we default to the liv-
ing organism as the gold standard for interpreting 
research data.  Defining a single gold standard is in 
keeping with complexity theory and its goal of ap-
proaching biology as a mathematical entity.   

Method 1: The simplest solution to the problem is 
to make the before (living) and after (post-mortem) 
volumes the same, or nearly so.  This requires 
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knowing the volumes of brain parts – in the same 
individual - before and after death.  Such data gen-
erates correction factors – part by part - for the vol-
ume distortions: 

Correction Factor = V(part,before)/V(part,after)  (1) 

Correction Factor = 80 mm
3
 / 70 mm

3
 = 1.143. 

To fix a volume distortion in the post-mortem brain, 
simply multiply the post-mortem volume (after) by 
its correction factor. 

V(part,before) = V(part,after) x Correction Factor  (2) 

V{part,before) = 70 mm
3
 x 1.143 = 80 mm

3
 . 

Method 2: Since before and after estimates for the 
volumes of Method 1 are not yet available in the 
IBVD, we can estimate these correction factors us-
ing the currently available data set.  

After identifying the parts that exist in both the ste-
reology and MRI data tables, average values were 
calculated and used to evaluate equation (1).  Fig-
ure 4.9 includes correction factors for 37 disrupted 
parts found in the control brains and Figure 4.10 
does the same for brains with schizophrenia.  These 
figures begin to explain why the mathematical 
markers of post-mortem and living brains shared so 
few duplicates (Figures 4.1, 4.2, 4.4, 4.5, 4.6).  
Moreover, they provide new information about the 
source, magnitude, and direction of the artificial 
complexity. 

Notice that the histograms of Figures 4.9 and 4.10 
identify correction factors that are both variable 
and subject to change.  In human brains, the vol-
ume of each part typically responds uniquely to its 
post-mortem environment.  This uniqueness, which 
represents a specific combination of post-mortem 
events, effectively scrambles the original biological 
data.          

Figure 4.9 Volume correction factors for specific 
parts of the post-mortem human brain display a 
wide range of values. A value of 1 indicates no 
change, >1 shrinkage, and <1 swelling. The blue 
column identifies the brain, which requires a cor-
rection factor of 1.11 to account for shrinkage of 
about 11% (From Bolender, 2013). 

 

Figure 4.10 Volume corrections for parts of the post-mortem 
brain with schizophrenia display a wide range of values (From 
Bolender, 2013). 

Method 3: Recall that our first attempts to diagnose 
schizophrenia failed repeatedly (Figures 4.1 and 4.2) 
because the MRI data standards were trying to di-
agnose the disorder in post-mortem brains that car-
ried one complexity related to biology and an artifi-
cial complexity related to death and specimen 
preparation.  If, however, we repeat the diagnosis 
after applying the correction factors for schizophre-
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nia to remove the artificial complexity (Figure 4.10), 
we arrive at the correct diagnosis (Figure 4.11).   

Now stereological data from post-mortem brains 
can work hand-in-hand with MRI data when playing 
the complexity game.  This represents an important 
step because it means that both stereological data 
of post-mortem brains and MRI data of living brains 
can contribute to building the same parallel com-
plexities.  Recall that we will need stereology oper-
ating at the microscopic level to quantify the very 
small biological parts we will encounter as we make 
our way to the genome.    

 

Figure 4.11 After applying the correction factors to the dis-
torted volumes, we get the correct diagnosis - schizophrenia.  
When compared to the distribution of living brains (Figure 
4.3), this post-mortem distribution shows striking similarities. 
Indeed, this distribution suggests that we can remove enough 
of the artificial complexity from post-mortem data to gain 
access to biology with the parallel complexity that remains. In 
effect, this puts the post-mortem data of the brain back in the 
game (From Bolender, 2013). 

Method 4: The first three methods dealt exclusively 
with the human brain.  To be inclusive, however, we 
prefer a solution to the distorted volumes problem 
– the artificial complexity - that requires only post-
mortem data and generalizes to all types of parts, 
settings, and species.    

If we estimate – using the unbiased sampling meth-
ods of stereology – the same parameter post-
mortem with and without a volume distortion, then 
the ratio of the two should give us a correction fac-
tor for the distortion.  Figure 4.12 plots cell counts – 

estimated with the disector method (Sterio, 1984) - 
against the volumes of the parts containing the 
cells.  R2s close to one can occur because both esti-
mates share the same reference compartments and 
consequently the same volume distortions.  Recall 
that the disector method estimates a numerical 
density (N/V), which when multiplied by a volume 
gives an absolute value (N).  Such an estimate, 
which is volume dependent (vd), carries a volume 
distortion.  

 

 

Figure 4.12 Cell numbers plotted against part volumes in the 
human cerebellum can display R

2
s close to 1.0 because both 

estimates share similar volume distortions.  Adapted from 
Baker et al., 1999, Andersen and Pakkenberg, 2003 (From 
Bolender, 2013).  

Recall that the fractionator method (Gundersen et 
al., 1988) gives a volume independent (vi) estimate 
for the total number of cells in a given biological 
part i - (N(cell,vi)).  It becomes our lifeline because 
we can be reasonably confident that estimates for 
the total number of cells pre and post-mortem re-
main the same.  Recall that cell counts are based on 
estimates of nuclear number.    

The correction method requires several estimates.  
Using the same set of sections collected for frac-
tionator-counting, the numerical density of the cells 
is estimated with the disector (Sterio, 1984) and the 
volume of the biological part containing the cells 
with the optical volume fractionator (Bolender and 
Charleston, 1993; Bolender et al., 1993).  Since the-
se estimates for cell number and part volume both 
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carry the same volume distortion, they supply the 
volume dependent (vd) estimate for cell number:  

N(cell,vd) = V(part,vd) x ((Ncell,vd)/V(part,vd)).  (6)  

Finally, to calculate a correction factor (CF) for a 
post-mortem part, we divide the volume independ-
ent cell count by the volume dependent one:  

CF = N(cell,vi)/N(cell,vd).    (7)  

To correct the volume of a post-mortem part, simp-
ly multiply the volume dependent part by the cor-
rection factor:  

V(part,vi) = V(part,vd) x CF.    (8)  

This correction factor (CF) applies to all volume de-
pendent estimates, including volume, surface, 
length, and number.  Moreover, the method gener-
alizes hierarchically up to and including the nucleus 
of the cell currently counted.  Since each biological 
part carries a unique distortion (recall Figures 4.9 
and 4.10), it has its own correction factor – estimat-
ed with equations 6 and 7.  Unless shown to the 
contrary, the correction factor should be able to 
provide absolute data estimates largely free from 
the volume distortions associated with post-
mortem material.   

 

4-7 Summary of Chapter 4 

Game 4 allowed us to reconcile two very different 
worlds of published data by applying complexity 
theory to a topic of fundamental importance - the 
quantitative relationship of data collected from the 
same part in living and nonliving states.  In the ab-
sence of corrections for volume distortions, we dis-
covered that a meaningful relationship between the 
two states could not exist.    

The first principle to come from this game is that 
complexity theory requires living systems to serve 
as gold standards.  In view of the results presented 
in this chapter, using biology-based standards to 
study biology becomes our most defensible posi-
tion.      

The next chapter pulls together the lessons we have 
learned thus far to figure out how to diagnose dis-
orders of the brain.  This will require new sets of 
parallel complexities along with a better understand 
of how to manage large data sets and control exper-
imental errors. 
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Chapter 5 

Game 5 - Diagnosing Disorders of the Brain 

Since we now have a better understanding of the 
relationship of pre to post-mortem data within the 
framework of two theory structures (reductionism 
and complexity), we can begin to address one of the 
fundamental challenges of clinical medicine – a da-
ta-driven approach to diagnosis.  With this chal-
lenge comes the added promise of prediction, 
which, in a quantitative setting, becomes a con-
nected set of diagnoses over time.  The diagnosis of 
one patient becomes the prediction of another be-
cause in living systems local complexities retain 
their ability to generalize globally.  By detecting the-
se generalizations with mathematical markers, di-
agnosis and prediction represent two interpreta-
tions of the same complexity – differing only as a 
function of time.  Such is the advantage of an objec-
tive approach to biology. 

Diagnosis is at the heart of identifying and solving a 
disease or disorder.  Once we know what is broken, 
we can look for a fix.  By following mathematical 
patterns and pathways that exist in universal data 
sets, we can hunt for the culprits and evaluate our 
remedies.            

5-1 Technology Shift 

We know two things at the outset.  In looking for a 
solution to the diagnosis problem, we can increase 
the specificity of a marker by increasing its number 
of variables and then figure out what combination 
of markers works by running a battery of explorato-
ry tests.  In both cases, however, we will have to 
make a technological shift from small data to big.  
Methods previously done manually will now require 
automation to operate on markers numbering in 
excess of 15,000,000.  Finding a PC based solution 
to our big data problem turns out to be an interest-
ing problem on its own.  For our purposes here we 
will have to bring together the individual strengths 
of four software packages (PowerBuilder, Excel, Ac-

cess, and Mathematica) operating on 32 and 64-bit 
platforms.           

A key finding of this chapter is a strategy for prob-
lem solving based on applying database filters to 
steer the results of a problem toward a best out-
come.  A solution to the diagnosis problem, for ex-
ample, requires identifying a set of filtering algo-
rithm that removes false positives and negatives 
from a parallel complexity.  Detailed explanations of 
the procedures and worked examples are given 
elsewhere (Bolender, 2014).     

5-2 Filtering Mathematical Markers 

By defining a mathematical marker as a unit of bio-
logical complexity, it becomes a universal data type, 
which, in turn, we can use to quantify phenotypes.  
A database of such markers contains a large amount 
of complex information containing solutions to a 
wide range of problems.  In such a database, how-
ever, these solutions intermingle with one another, 
leaving us with the task of extracting just the solu-
tion we want.  Our goal, therefore, becomes one of 
applying filters to a database to produce the best 
parallel complexity for the current job.       

Quadruplet Markers: A quadruplet marker is an 
alphanumeric string consisting of four named parts 
(A, B, C, D), each with a numerical values (X, Y, Z, Q).  
It defines the relationship of one part to another as 
a mathematical ratio (AX:BY:CZ:DQ).  By increasing 
the number of variables in a marker, it increases its 
information content and specificity. 

Switching to quadruplets, however, involves moving 
our data platform from small data to big.  As shown 
in Figure 5.1, quadruplet markers quickly exceed 
the limits imposed by 32-bit Excel spreadsheets (2 
GB of memory and 1,048,576 rows of data).  Since 
working with such mathematical markers includes 
shuttling large amounts of data back and forth be-
tween spreadsheets and databases, we will have to 
upgrade our software.   
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Quadruplet markers, however, introduce a host of 
new problems.  Recall that diagnosis – based on 
mathematical markers - depends on matching un-
known markers to known standards and tallying the 
results (Chapter 4 and Bolender, 2011-2013).  This is 
done by adding an unknown set of markers to a ta-
ble of known markers in a diagnosis database, sort-
ing the markers alphabetically, and marking each 
duplicate marker (unknown=known standard) as it 
appears.  Alternatively, we can transfer the data-
base table to an Excel spreadsheet and use the con-
ditional formatting tool to identify duplicates auto-
matically.  In practice, however, sorting a large data 
set automatically with a spreadsheet can take many 
hours.   

 

Figure 5.1 Original data sets increase the amount of infor-
mation they contain by forming permutations.  When ex-
pressed as mathematical markers these permutations define 
phenotypes both qualitatively (alpha string) and quantitative-
ly (numeric string).  Notice that the amount of data coming 
from a single paper can explode.  For example, the same 20 
parts can produce 380 data pairs, 6,840 triplets, 116,280 quad-
ruplets, and 1,860,480 quintuplets.  Each data set represents 
the phenotype as a set of patterns with a different degree of 
specificity (From Bolender, 2014).    

The problems surrounding quadruplet markers can 
be resolved by shifting to a 64-bit platform, running 
Excel and Access together as a team, and using cal-
culation templates (Bolender, 2014).   

Making Known Markers:  Testing the effectiveness 
of a diagnostic test requires two independent data 
sets – one for knowns and the other for unknowns.  
We begin with the volume data of a given paper in 
the IBVD and use the names of the parts to gener-
ate a list of quadruplets with the permutation func-
tion of Mathematica.  Next, we import this list into 
an Excel worksheet as a text file (tab delimited) and 
use a template worksheet to associate each part 
(name) with its numerical value (volume).  Once the 
ratios are calculated, they are assigned their deci-
mal repertoire values.  A template worksheet per-
forms all the concatenations and calculations auto-
matically, thereby producing a table of quadruplet 
markers.  A diagnosis database is assembled by ap-
plying this procedure separately to control and ex-
perimental data sets – paper by paper.   

Making Unknown Markers: To test the effective-
ness of a diagnosis database, unknowns are pre-
pared in the same way – one paper at a time - using 
the template described above.  Since these data 
come from patients carrying both normal and ab-
normal markers, a false positive occurs whenever a 
normal marker in the unknown corresponds to an 
abnormal marker in the diagnosis database (control 
(unknown) = experimental (known)).  To identify 
these false positives, we can run the unknown 
markers of a disorder against a database of normal 
markers and then delete the duplicates – the false 
positives.           

Diagnosing disorders of the brain with a database of 
markers involves dealing with many more problems 
than one might first imagine (Bolender, 2012).  In 
such a database, the same marker can occur one or 
more times, it can be unique or shared, and it can 
be a false positive.  Developing a database of diag-
nostic markers requires an in-depth understanding 
of these issues.  Trial runs and extensive testing be-
come essential.  

Since the earlier tests indicated that disorders were 
diagnosed correctly with shared markers (Bolender, 
2012), we will make our first move with a database 
of these markers.     
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Move 19: Can shared markers based on quad-
ruplet markers diagnose disorders of the brain 
correctly? 

5-3 Test 1: Quadruplets (Shared 
Markers) 

Starting with the original database of quadruplet 
markers derived from the IBVD, we apply filters to 
set the properties of the first diagnosis database.  
The filters remove duplicate markers from the same 
paper (control marker = experimental marker) and 
from the database (experimental marker = experi-
mental marker) so that a given marker appears only 
once for a given disorder (Figure 5.2).  The algo-
rithm defines the diagnosis database for quadruplet 
markers, which is stored as a text file (Test1.txt).     



Figure 5.2 Algorithm 1 - Test 1 (From Bolender, 2014). 

Diagnosing Unknowns (Shared Markers): To test 
the effectiveness of the algorithm, we import the 
database text file (test1.txt) into an Access database 
(64-bit), append a text file containing the markers of 
a test paper (unknown), look for matches (unknown 
= known), and tally the results.  The diagnosis goes 

to the disorder with the largest number of identi-
fied unknowns.  Note that the Access database in-
cludes a routine for finding duplicates.    

The problem with algorithm 1 is that it leaves a res-
idue of false positives.  Since the same marker can 
appear in several different disorders, the markers of 
one or more disorders can overwhelm those of an-
other.  In turn, this creates false positives that can 
lead to an incorrect diagnosis.  The primary reason 
for running test 1 was to see if the quadruplet 
markers with their increased specificity could coun-
teract the negative effect of the false positives.   

Test Results: To test the effectiveness of this first 
database as a diagnostic tool, data from thirteen 
additional IBVD papers were translated into quad-
ruplet markers and run – one by one as unknowns - 
against the knowns of the diagnosis database (Table 
5.1).  Note that the numbers identifying the papers 
correspond to those of the IBVD.   

Table 5.1 The table includes the results of running the data of 
13 unknowns (publications) – one at a time - against a collec-
tion of known standards, all of which came from the IBVD.  A 
result can be correct (YES), incorrect (NO), tied (TIE), or nonex-
istent (no variables in play).  In spite of the fact that more 
than 500,000 known markers were in play, the diagnosis was 
correct only about 50% of the time.  Clearly, the correct diag-
nosis was repeatedly being overwhelmed by the data of other 
disorders (308, 329, 472. 587, 621, and 623).  In two cases (308 
and 472), the disorder being diagnosed failed to have even a 
single marker in play.  Note that 5 of the 7 correct diagnoses 
came from the two disorders with the largest number of 
markers - schizophrenia (4) and bipolar (1) (From Bolender, 
2014). 
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The results of test 1 were disappointing in that the 
diagnosis was correct only 54% of the time; the rest 
(labeled NO) were false positives (46%) (Table 5.1).  
The table shows that several disorders masked the 
correct diagnosis (velocardiofacial, panic disorder, 
Down syndrome, and Alzheimer), but not schizo-
phrenia.  Although the increased specificity of the 
quadruplet markers played a role (no masking by 
schizophrenia), the number of parts not in play 
seemed to be a major limiting factor. 

General Observations: The MRI papers from the 
IBVD supplied roughly 12,000,000 quadruplet 
markers for the control and experimental data sets.  
Eliminating duplicate markers (control = experi-
mental) at the level of individual papers reduced 
this number to 4,796,416, and finally to 589,945 
after deleting duplicates (experimental = experi-
mental for a given disorder).  This generated a diag-
nosis database for the known quadruplet markers.  
Notice that the filters of Figure 5.2 assure that a 
given mathematical marker occurs only once for a 
given disorder, but that the same maker can occur 
in different disorders.   

Since a quadruplet marker contains four parts 
(names) with four connections (ratios), the fact that 
they existed across such a wide range of disorders 
seems remarkable in itself.  Figure 5.3, for example, 
shows that the quadruplet database contains 2,538 
markers for ADHD (red), but that ADHD shares its 
markers with at least 12 other disorders (blue).  See 
Appendix I (Bolender, 2014) for histograms charac-
terizing 21 different disorders of the brain.  These 
histograms provide insight into the way biology 
manages and conserves its complexity.  

  

Figure 5.3 The diagnostic database contains 2,538 quadruplet 
markers for ADHD of which 1,434 also occur in schizophrenia, 
468 in Alzheimer, etc. (From Bolender, 2014). 

Figure 5.4 itemizes the frequency distribution of the 
quadruplet markers – by disorder - for the database 
used in Test 1.  Notice that the markers range in 
number from 24 to 245,621, that schizophrenia and 
bipolar disorder account for 96% of the total, and 
that the Y-axis is logarithmic.     

 

Figure 5.4 The histogram illustrates the frequency distribution 
of quadruplet markers in the diagnosis database across 21 
disorders of the brain.  Notice that most of the markers be-
long to schizophrenia and bipolar disorder (From Bolender, 
2014). 

Apparently, the test failed because it attempted to 
compare known and unknown samples that were 
poorly matched.  If true, then increasing the 
amount and mix of data in the diagnosis database 
(knowns) should improve the result.  Test 2 consid-
ers this possibility by shifting from quadruplet to 
triplet markers.  
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By switching from quadruplet markers to triplets, 
the next move will determine if increasing the 
number of shared markers in play improves the di-
agnosis. 

Move 20: Can shared markers based on triplet 
markers diagnose disorders of the brain cor-
rectly? 

5-4 Test 2: Triplets (Shared Mark-
ers) 

This test consisted of downsizing the quadruplet 
markers of test 1 to triplets (AX:BY:CZ), while at the 
same time increasing  the number of IBVD papers 
contributing markers to both the known and un-
known data sets (Figure 5.5).  Notice in Table 5.2, 
however, that test 2 also failed at about the same 
level as test 1.  The diagnosis was correct only 57% 
of the time.  In addition, the triplet markers dis-
played a substantial loss of specificity, as shown by 
the strong masking effect by schizophrenia.  Re-
move the masking effect, however, and the success 
of the test jumps to 86%.     

Table 5.2 The diagnosis database of Test 2 included the same 
collection of parts used in Test 1, but this time they were used 
to produce triplet markers.  The table, which shows a strong 
masking effect by schizophrenia, produced a diagnostic score 
of only 57%.  When the masking effects of schizophrenia data 
were removed from the analysis, the score improved to 86% 
(From Bolender, 2014).   

 

 

Figure 5.5 Algorithm 2 - Test 2 (From Bolender, 2014). 

 

Taken together, the results of tests 1 and 2 suggest 
that a database containing just shared markers of-
fers little promise as a diagnostic tool.  Accordingly, 
test 3 will try unique markers.   
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Move 21: Can unique triplet markers diagnose 
schizophrenia correctly? 

5-5 Test 3: Triplets (Unique Mark-
ers) 

Next, we operate on data derived exclusively from 
patients with schizophrenia.  Recall that schizo-
phrenia carries two types of markers, those that it 
shares with other disorders and those unique to 
schizophrenia.  When we select only the unique 
markers (the ones that occur only once) from the 
diagnosis database of triplets described in Test 2, 
we get 83,305 for schizophrenia (Figure 5.6).  If, in 
turn, we run several unknowns against this new set 
of unique markers (knowns), the effectiveness of 
the diagnostic method jumps to 100% (Table 5.3).  

Table 5.3 Run the unknown markers against the database of 
markers unique to schizophrenia and the unknowns are diag-
nosed correctly (From Bolender, 2014).    

 

 

 

Figure 5.6 Algorithm - Test 3 (From Bolender, 2014). 

 

The problem with the test is that it succeeds only 
when the unknowns come from patients with schiz-
ophrenia.  However, the results suggest that a solu-
tion to the diagnosis problem at least seems possi-
ble.  The next test (Move 21) directs the question to 
all disorders and quadruplet markers.  
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Move 22: Can a database of unique quadruplet 
markers diagnose disorders correctly? 

5-6 Test 4: Quadruplets (Unique 
Markers) 

We return to the quadruplets database and select 
only the unique markers - those that appear only 
once in the database (Figure 5.7).  When we run 
several unknowns against the unique knowns of this 
database, however, the promising results seen in 
Table 5.3 fail to appear.  Table 5.4 shows that the 
database of unique markers has a success rate of 
only 8%.  Moreover, the markers of four papers 
(308, 587, 621, and 657) were not even in play, as 
indicated by the (0).  Although the markers are 
unique in the quadruplet database of knowns, they 
were not unique in the unknowns because the same 
marker occurs in more than one disorder.  In effect, 
the unknowns are producing false positives.     

Table 5.4 The database of unique quadruplet markers was not 
effective because it shares its unique markers with more than 
one of the unknown disorders.  In effect, the known markers 
are unique to the knowns but not to the unknowns (From 
Bolender, 2014).   

 

 



Figure 5.7 Algorithm - Test 4 (From Bolender, 2014). 

 

The results thus far suggest that we are in trouble 
because our attempts to solve the diagnosis prob-
lem fail repeatedly.  Complexity theory, however, 
reassures us that every problem and solution intrin-
sic to biology can exist in a parallel complexity - 
provided we set up the problem correctly.  We 
simply need to rethink our approach.          

What do we know so far?  We know that a diagnosis 
succeeds when the all the markers (known and un-
known) are unique (Table 5.3), but fails when one 
or both of the markers – known and unknown - are 
shared (Tables 5.1, 5.2, and 5.4).  Tests 1 and 2 
failed because they used just shared markers.  Test 
3 succeeded because both the known and unknown 
markers were unique.  Test 4 failed because one set 
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of markers was unique (knowns), but the other set 
was shared (unknowns).     

If we study these results carefully, they provide all 
the clues required to solve the problem.  We need 
to apply a set of filters that prevent or minimize 
sharing within - but not between - the known and 
unknown markers.  In effect, we can diagnose a dis-
order of the brain by matching unknown to known 
markers, provided such markers are unique to the 
individual known and unknown data sets.  In Test 5, 
we take the next step by applying a filtering algo-
rithm that improves the number of successful out-
comes.     

Move 23: Can additional filters improve the 
success of a database of unique quadruplet 
markers in diagnosing disorders correctly? 

5-7 Test 5: Quadruplets (Unique 
Markers) 

Now, we can begin to zero in on a solution.  Test 4 
uses one unique filter, whereas Test 5 uses two 
(Figure 5.8).  The first filter of Test 5 selects for 
unique markers, whereas the second filter selects 
for markers unique to a given disorder – paper by 
paper.  The resulting markers serve as the knowns 
in the diagnosis database of Test 5.  Table 5.5 indi-
cates that this new filtering algorithm leads to a 
better outcome, given the resulting score of 80%.  
Notice that three of the unknowns (472, 587, and 
657) were out of play (OOP) because Filter 3 found 
no matches.  Furthermore, the unknown markers of 
papers 308 and 621 lead to an incorrect diagnosis of 
epilepsy and that the correct diagnosis was some-
times out of play, as indicated by the absence of 
duplicates (0).  These results tell us that we are re-
ducing, but not eliminating issues related to sam-
pling, data compatibility, false positives, and false 
negatives.  If we remove the three OOP unknowns 
(false negatives), then the diagnostic algorithm 
works successfully 100% of the time.   

Table 5.5 By increasing the uniqueness of the markers, we 
increase their ability to diagnose disorders correctly.  Remov-
ing papers that are out of play (OOP) improved the results 

(From Bolender, 2014).

 

 

Figure 5.8 Algorithm Test 5 (From Bolender, 2014). 
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The remaining tests show that a success rate of 
100% becomes possible if we introduce additional 
filters and define the boundaries of the diagnostic 
space.  In effect, a success rate of 100% depends on 
putting the markers in a data cage so that we can 
remove all the false positives and negatives.  At 
first, it may appear that we are gaming the system, 
but in reality, we are building a foundation for the 
predictive modeling of the disease process.  By get-
ting all the false positives and negatives under con-
trol, we can then predict the likelihood of a correct 
diagnosis for patient data existing outside of the 
cage.  If, for example, a diagnosis is incorrect for a 
given patient, such a mistake can occur only once 
because the patient’s data will be added to the 
cage.                     

Move 24: Can unique quadruplet markers di-
agnose disorders correctly 100% of the time 
correctly? 

5-8 Test 6:  Quadruplets (Unique 
Markers) 

We can arrive at a diagnostic score of 100% by deal-
ing successfully with all the outstanding issues (Fig-
ure 5.6).  By designing a database wherein all the 
known and unknown markers are unique and each 
marker can assume the role of both known and un-
known, the disrupting factors disappear.  Notice 
that this curious solution was driven entirely by the 
complexity itself.  A diagnosis database capable of a 
100% success rate requires a closed system, where-
in only those markers coming from the IBVD are in 
play.  However, markers derived from sources ex-

ternal to the IBVD can be expected to approach the 
100% level as the properties of markers in the diag-
nosis database approaches that of the general pop-
ulation.             

Since the results of the test indicated that only 
unique mathematical markers could give the correct 
results 100% of the time, the diagnosis database for 
quadruplets (MRI_Q_DIAG_100) contains just such 
markers (Figure 5.9).  Table 5.6 summarizes the 
composition of this database, which contains data 
from 75 papers and 3.6 million unique markers.  A 
marker generated from any one of these 75 papers 
and run against this database, will give a correct 
diagnosis.           

Table 5.6 With the appropriate filters applied, a quadruplet 
database of unique markers diagnoses a disorder correctly 
100% of the time (From Bolender, 2014). 

 

Table 5.6 offers a gentle wake-up call.  If the IBVD is 
representative of the clinical literature, then three 
or fewer papers are representing 86% (19/22) of the 
disorders.  Such small sample sizes will at some 
point compromise our ability to diagnose and pre-
dict outcomes at the 100% level – but only when we 
stray beyond the boundaries of our closed system 
(data cage).  When this occurs, a diagnosis reverts 
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to a prediction with a probability yet to be deter-
mined.    

The inescapable conclusion to come from Table 5.6 
is that interacting with biology by means of a paral-
lel complexity is going to involve extremely large 
data sets especially when clinical diagnosis is the 
goal.  We can expect such diagnostic and predictive 
databases to become fundamental to our health 
care systems.  

              

Figure 5.9 Algorithm - Test 6 (From Bolender, 2014). 

  

         

 

Move 25: Can unique triplet markers diagnose 
disorders correctly 100% of the time correctly? 

5-9 Test 7: Triplets (Unique Mark-
ers) 

This test applies the procedure described for the 
quadruplet markers of Test 6 to triplet markers 
(Figure 5.10).  Once again, the diagnosis of unknown 
markers was correct 100% of the time (Table 5.7).  

By adding one more filter, we can minimize the ef-
fect of false positives that may occur when the di-
agnosis database is used to predict a disorder with 
an unknown set of markers – existing outside of the 
data cage.  This includes, for example, data that 
would come from a single patient.  Recall that a 
marker of a disorder becomes a false positive 
whenever a control marker duplicates it.  These du-
plications occur at two levels - papers and data-
bases.  We can remove false positives (C=E) from a 
given paper by identifying duplicates between nor-
mal (C) and abnormal (E) markers.  Once the diag-
nosis database is built, it can be run against the 
original database of normal markers to delete the 
remaining false positives (C=E for all papers) in the 
database.  This database filter, for example, re-
moved an additional 31,275 false positives from the 
MRI-T-Diag-100 database of Test 7.  This additional 
step reminds us of the behavior of a complex sys-
tem, wherein both local and global issues are al-
ways in play.      

Notice in Tables 5.6 and 5.7 that the markers char-
acterizing 22-27 disorders of the brain came from a 
relatively small number of papers - 75 for quadru-
plets and 117 for triplets.  Given the software tools 
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included in the 2014 software package, the task of 
increasing substantially the number of papers in 
play becomes a reasonably straightforward task.   

Table 5.7 When filtered appropriately, a triplet database of 
unique markers can diagnose a disorder correctly 100% of the 
time (From Bolender, 2014).

 

 



Figure 5.10 Algorithm - Test 7 (From Bolender, 2014). 

5-10 Summary of Chapter 5 

The solution to the diagnosis problem described 
herein may seem curious at first reading because it 
follows an unfamiliar set of rules.  Instead of using 
the signs and symptoms of a disorder to make a 
diagnosis, it uses a set of unique markers taken 
from diagnosed patients to define a given disorder 
as a unique phenotype.  By closing the system, we 
optimized both accuracy and precision – simultane-
ously.  In effect, we used a parallel complexity to 
create a data cage wherein all the disorders in play 
will always be diagnosed correctly - 100% of the 
time.     

Given biology with its nested complexities and re-
dundant connectivity, a given variable (e.g., math-
ematical marker) can be subject to wide range of 
influences.  This explains – at least in part - why the 
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diagnosis problem was so difficult to solve.  False 
positives and negatives were interfering with our 
goal of 100% effectiveness because we did not 
know how to manage the instability attributed to 
the unknown variables.  By putting our parallel 
complexity into a data cage, we eliminated this in-
stability by identifying and removing all the false 
positives and negatives with filters.  Since the data 
cages have no practical upper limits on the amount 
of data they can contain, the data sets can approach 
a global reality.  In effect, this software device al-
lows us to isolate and operate on a complex data 
set without suffering the limits imposed by outside 
disturbances.  This newly acquired skill creates new 
opportunities.  When, for example, we want to look 
at the same disorder in different subsets, popula-
tions, or stages of development, data cages will al-
low us to ferret out subtle differences.  Further-
more, by generating millions of data cages for every 
type of phenotype imaginable, we can redefine di-
agnosis and prediction as a connected set.  In effect, 
data cages will allow us to explore even the most 
complicated complexities.     

Mathematical markers create an intriguing view of 
biology by demystifying the nature of its complexi-
ty.  Although they begin as one-dimensional strings 
of parts and connections, we have seen that they 
readily concatenate to form two-dimensional sur-
faces, and three-dimensional networks.  This sug-
gests that biology is operating in n-dimensional 

space.  This becomes a useful construct because we 
can use it to associate a given task with a dimen-
sion.  Diagnosis and prediction, for example, require 
one-dimensional strings, whereas identifying the 
background of a disease requires information exist-
ing in higher dimensions.  In effect, we have a new 
strategy.  Since everything is connected, mathemat-
ical markers serve to define a coherent infrastruc-
ture for complex problem solving.     

In clinical diagnosis, the importance of connectivity 
begins to assume a much broader meaning.  Chang-
es in the brain can prompt changes to occur in the 
periphery and vice versa (Agostini et al., 2012; Bor-
son et al., 2008; Cecil et al., 2008; Clarence et al., 
1999; Guido et al., 2013; Herting et al., 2014; Khan 
et al., 2012; Nagai et al., 2010; Pérez-Dueñas et al., 
2006; Strassburger et al., 1997; Tiehuis et al., 2008).  
This means that data collected at one location in an 
individual can be used to diagnose or predict an 
event at another.  Accordingly, our ability to quanti-
fy human phenotypes triggers a host of new oppor-
tunities.                   

By combining the expertise of leading clinicians with 
MRI data to form parallel complexities, we now 
know how to recruit the biology literature as a reli-
able problem solver.  In Game 6, we will attempt to 
extend the strategy developed for diagnosis to the 
disease process.  
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Chapter 6 

Game 6 – The Disease Process 

How does biology – in keeping with its rules of com-
plexity – produce disease in the human brain?  
Whatever the cause, biology replaces a normal com-
plement of parts and connections with an abnormal 
one (Chapters 3-5).  By changing the phenotype of 
the brain, new properties and symptoms appear that 
we regard as abnormal.  Our goal in this chapter will 
be to use parallel complexities to identify patterns 
that begin to explain the disease process at the level 
of a quantitative phenotype.   

The game is simple.  We will start with the big pic-
ture – created by combining the mathematical 
markers of twenty-one disorders – and then unfold it 
stepwise to discover what changes occur, what parts 
play major roles, how disorders overlap, and how 
symptoms relate to markers.     

6-1 Unfolding the Complexity of 
Disease 

We can study the disease process as it relates to dis-
orders of the brain by assembling a parallel complex-
ity from the disorders available to us in the IBVD.  
Since we will be looking for shared patterns, the da-
tabase defining our parallel complexities will include 
only shared (duplicate) markers. 

What will we learn from these shared markers?  
They can show us where the abnormal patterns ap-
pear, identify relationships of patterns to diseases, 
and allow us to observe an individual disease as a 
complexity embedded within the larger complexity 
defined by the disease process.  By combining twen-
ty-one different disorders from the IBVD into a com-
posite brain, we begin with a global view of the dis-
ease process.   

Starting with this composite brain as our parallel 
complexity, we will peel it apart objectively with 
mathematical markers to examine the design of each 
disorder and its relationship to the disease process.  
We will discover that a modular design is the com-

mon thread running through all the disorders, one 
that identifies yet another first principle.  Biology, it 
would appear, creates a collection of building blocks 
and then deploys them in different ways to create 
normal and abnormal brains.  Not surprising, biology 
is playing a game similar to the one nature plays with 
the periodic table of elements – good ideas tend to 
encourage emulation.        

Since large data sets and patterns will be in play, 
most of the results are presented graphically.  To 
this end, we will apply a new algorithm from Math-
ematica 10 (Wolfram Research) - the Communi-
tyGraphPlot – to parse our composite brain.   

Move 26: Do disorders of the brain adhere to a 
modular process? 

6-2 Generalizing Disorders with 
Modular Markers 

According to complexity theory, a generalization ex-
ists when the same pattern occurs both locally and 
globally - repeatedly.  Since mathematical markers 
contain a well-defined set of parts and connections, 
we will use them as a proxy for the modular building 
blocks of biology.  Both quadruplet and triplet mark-
ers will be in play. 

Quadruplet Markers: Our first move verifies the ex-
istence of such modules defined either as quadru-
plet (Table 6.1) or triplet markers (Figure 6.1).   

In Table 6.1, quadruplet markers display 10 different 
duplicate groups, ranging from 2 to 11 occurrences 
per group.  Even though the alphanumeric string of 
the quadruplet markers contain 8 variables 
(AX:BY:CZ:DQ), 21% of the markers in the quadru-
plets database form duplicates globally.  This repre-
sents more than two million markers.  

Notice in Table 6.1 that the percentage columns to 
the right identify a conspicuous shift in the frequen-
cy distribution of the duplicate groups from 2 copies 
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to 3 and 4.  This tells us that the disease process in-
volves an increase in connectivity.  Not surprisingly, 
this observation is exactly opposite to what we 
found earlier for post-mortem data in Figures 4.7 
and 4.8.  This inconsistency can be explained by the 
presence of multiple complexities in play (Figure 
3.1).   

Such inconsistencies serve to remind us of the risk 
involved in extrapolating post-mortem observations 
to living systems (Chapter 4).  More importantly, 
however, we are beginning to understand why so 
many inconsistencies can exist in the biology litera-
ture and why experiments can be so difficult to re-
produce.  Unless we have enough of the right infor-
mation, our experimental outcomes all too often 
end up carrying an unacceptably high degree of risk.  
Wrong information can quickly turn the results of an 
experiment upside down.         

Table 6.1 The distributions of quadruplet markers suggest that 
the brain responds to the disease process by increasing con-
nectivity.  In disease, the percentage of markers tends to shift 
from 2 copies per group to 3 and 4.  Of the 13,360,056 quadru-
plet markers, 2,802,799 (21%) were duplicates (From Bolender, 
2014).   

 

Triplet Markers: The database of triplet markers in-
cluded 381,476 duplicate markers, which represent-
ed 47.2% of the total population.  The global distri-
bution of these duplicate markers ranged from 2 to 
64 per group (Figure 6.1).     

 

Figure 6.1 The distribution of triplet markers (C+E) shows du-
plications ranging from 2 per group to 64 (From Bolender, 
2014).  

 

Since Table 6.1 and Figure 6.1 verify that modules 
(markers) exist in large quantities at the global level, 
we can approach the disease process as a mathe-
matical puzzle.  Starting with disorders of the brain 
as a general complexity, we can tease it apart to un-
cover specifics of the disease process.  

Move 27: Can we unfold the complexity of 
brain disorders into well-defined communities 
of markers and disorders? 

6-3 Finding Communities of Disor-
ders 

Using our database of duplicate markers, we can 
create a parallel complexity for an imaginary brain 
suffering simultaneously from 21 different disorders 
(Figure 6.2).  In turn, we can unfold the nested  com-
plexity of this brain to discover how these disorders 
are related (Figures 6.23-6.8).  The unfolding process 
continues until only clusters of two disorders re-
main.   
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Figure 6.2 A database of duplicate mathematical markers be-
comes a parallel complexity representing twenty-one disorders 
of the human brain (From Bolender, 2015). 

Step 1: When applied to the entire database of du-
plicate mathematical markers (Figure 6.2), the 
CommunityGraphPlot (Mathematica) identifies five 
distinct clusters (Figure 6.3), four of which contain 
closely related disorders.  The patterns displayed by 
the dark blue lines (connectivity) and the dots 
(markers) suggest that the disorders are all connect-
ed and that they share many of the same abnormal 
markers. 

 

Figure 6.3 Step 1: The collection of shared mathematical mark-
ers (modules) from the abnormal human brain (Figure 6.2) 
distribute – as communities - into five distinct clusters.  Note 
that a dot represents a mathematical marker connected (dark 
blue line) either to a duplicate marker or to a disorder (From 
Bolender, 2015). 

Step 2: Next, the complexity of each cluster identi-
fied in Figure 6.3 is unfolded to reveal the next level 

of complexity (Figure 6.4).  Now clusters labeled 1, 2, 
4, and 5 in Step 1 display clusters of their own.  Note 
that cluster 3 – shown in Figures 6.3 and 6.7 - con-
tains a single disorder (Alzheimer’s disease).     
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Figure 6.4 Step 2: The CommunityGraphPlots illustrate the 
sharing of markers (modules) between disorders.  Each dot 
represents a mathematical marker and the blue line can be a 
connection between two shared markers or between a marker 
and a disorder.  Each cluster is characterized by the disorder(s) 
it contains (From Bolender, 2015).  

Step 3: Whenever a given cluster in Figure 6.4 carries 
more than two disorders, it is unfolded further (Fig-
ure 6.5).     

 
 

 

 

 

 

Figure 6.5 Step 3: Clusters containing multiple disorders in Step 
2 are unfolded into clusters containing just two disorders.  In 
such clusters, the shared markers (modules) appear as an in-
termediate, spindle shaped structure (From Bolender, 2015).  

Step 4: Finally, cluster 5.1.1 is unfolded into three 
pairs of clusters (Figure 6.6).     
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Figure 6.6 Step 4: Cluster 5.1.1 is resolved into three clusters 
relating the markers (modules) of autism to Huntington dis-
ease, alcohol, and preterm (From Bolender, 2015). 

Figure 6.7 summarizes the disorders in the five clus-
ters of Step 1 (Figure 6.3).  Each cluster identifies 
disorders most closely related – as defined by the 
sharing of markers.  Bear in mind, however, that this 
picture reflects the contents of the current IBVD da-
tabase and is likely to change over time.  Whether 
protocols developed to treat a specific disorder 
might also benefit disorders in the same cluster be-
comes a question we are encouraged to ask.          

 

Figure 6.7 The graph shows the relationship of clusters to dis-
orders in the composite human brain, unfolded as a function of 
shared markers (Figure 6.3; From Bolender, 2015).   

6-4 Sharing Markers 

When reduced to the final cluster pair, we can iden-
tify the specific markers being shared by the two 
disorders.  Figure 6.8, for example, adds detail to the 
relationship of ADHD to OCD by replacing the dots of 
Figure 6.5 with the alphanumeric strings of mathe-
matical markers.  Notice that the OCD cluster shares 
more than half (58%) of its duplicate markers with 
those of the ADHD cluster.  Given the extensive shar-
ing of markers (Figure 6.3, Table 6.2), it appears like-
ly that substantial fractions of many disorders will 
map back to the genome with similar routes and 
destinations.  If this turns out to be the case, then 
identifying, targeting, and disrupting the most dam-
aging routes may prove to be an effective strategy in 
managing groups of related disorders.               

Recall that a given disorder carries a complement of 
shared and unique markers defined by biology and 
to an unknown extent by the current contents of our 
parallel complexity. 
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Figure 6.8 The clusters formed by ADHD and OCD show a 
strong sharing of markers.  Notice that a similar pattern of ex-
tensive sharing exists between autism and alcohol (Figure 6.6; 
From Bolender, 2015).    

 

Move 28: Can disorders sharing similar markers 
share similar symptoms? 

6-5 Sharing Markers and Symptoms 

A clinical diagnosis seeks to determine the nature of 
a disease or disorder, typically by identifying symp-
toms.  When diseases share similar symptoms, which 
is the case for many disorders of the brain, a differ-
ential diagnosis becomes the method of choice.  Alt-
hough Table 6.2 includes only a small sample of dis-
orders and symptoms, it serves to illustrate the chal-
lenge faced by a physician when diagnosing a disor-
der of the brain.   

Table 6.2 The table identifies symptoms for various disorders 
as impairments.  Given the subjective nature of identifying 
impairments and the fact that a given impairment applies to 
many different disorders, making a differential diagnosis re-
quires vast expertise (Adapted from Internet Mental Health © 
1995-2015 Phillip W. Long, M.D., From Bolender, 2015).   
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In this move, we will combine the information in Ta-
ble 6.2 with the results of CommunityGraphPlots to 
look for correlations of symptoms to markers.     

Figure 6.9 illustrates that disorders sharing similar 
symptoms frequently share similar markers.  Alt-
hough no attempt was made to associate symptoms 
to specific markers, larger data sets will encourage 
such studies.      
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Figure 6.9 Graph and community plots illustrate the extent to 
which different disorders share similar symptoms and markers 
(From Bolender, 2015).   

 

 

Next, we can unfold the composite brain of Figure 
6.2 according to the number of times a given marker 
is duplicated.  This will allow us to identify those 
markers – with their associated parts and ratios – 
most often associated with the disease process.  
Such information might provide clues about where 
the disorder started or what parts must be in play 
for the disorder to exist.  By plotting duplicates (Fig-
ure 6.1) ranging from 2 to 64, we can identify – at 
least provisionally - the relative importance of specif-
ic parts.  This becomes our next move.   

 

Move 29: Can we rank order the relative im-
portance of markers in a community as a func-
tion of their frequency? 

6-6 Identifying the Prime Movers 

Figures 6.10 to 6.17 display CommunityGraphPlots 
for markers and disorders (above) and for parts and 
disorders (below) for duplicates ranging from >11 to 
>2 per group.  They are useful in that they identify 
the preferences shown by disorders for specific 

markers, parts, and connections.  The figure legends 
identify the parts, the names of which are often ob-
scured in the clusters.     

 

 

 

Figure 6.10 Duplicates >11.  The hippocampus is the part of the 
brain involved most often in the disease process (From 
Bolender, 2015).  Note that some of the images can be en-
larged to read the fine print.  
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Figure 6.11 Duplicates >9.  The disorders cluster around the 
hippocampus and amygdala (From Bolender, 2015). 

 

 

 

Figure 6.12 Duplicates >8.  The disorders cluster around the 
putamen, caudate, and hippocampus-amygdala (From 
Bolender, 2015). 

 

 

 

Figure 6.13 Duplicates >7.  The disorders cluster around the 
putamen, caudate, and hippocampus-amygdala (From 
Bolender, 2015). 

 



89 

 

 

Figure 6.14 Duplicates >6. The disorders cluster around the 
lateral ventricle – brain, cerebrum-palladium, hippocampus- 
temporal lobe, and putamen-caudate- thalamus (From 
Bolender, 2015). 

 

 

Figure 6.15 Duplicates >5.  The disorders cluster around the 
thalamus-nucleus accumbens, anterior and posterior insula, 
brain-amygdala-cerebrum-caudate-putamen-pallidium (From 
Bolender, 2015).   

 

 

Figure 6.16 Duplicates >3. The disorders cluster around the 
brain-thalamus, anterior and posterior insula, nucleus accum-
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bens-cerebrum-pallidium-caudate-putamen-lateral ventricle, 
and hippocampus-amygdala-temporal lobe (From Bolender, 
2015). 

 

 

 

Figure 6.17 Duplicates >2 (From Bolender, 2015). 

Table 6.3 summarizes the relationship of parts to 
disorders according to the frequency of duplicates 
(>11 to >2) – illustrated in Figures 6.10 to 6.17.        

 

Table 6.3 The table shows the relationship of parts to disorders 
arranged according to the number of duplicate markers.  These 
data suggest that a relatively small number of parts play a dis-
proportionately large role in the disease process (From 
Bolender, 2015).  Recall that we found a similar pattern earlier 
with the biological blueprint (Figures 2.16 and 2.17).     

 

Notice in Table 6.3 that most of the disorders de-
pend importantly on abnormalities in just five parts 
– the hippocampus, amygdala, putamen, caudate, 
and temporal lobe – according to the data currently 
available in the IBVD.  It also shows an extensive 
sharing of parts among different disorders.  Taken 
together, Figures 6.10-6.17 and Table 6.3 continue 
to suggest a modular origin of disorders, wherein 
communities serve to identify preferences.   
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6-7 Summary of Chapter 6 

The moves described in this chapter used a parallel 
complexity designed as a database of shared math-
ematical markers (modules) to unfold the complexity 
of the disease process.  The results show that biolo-
gy defines itself – in health and disease - as a struc-
tural hierarchy using modules consisting of clearly 
defined parts and connections.  Since the same 
modules frequently appear both locally and globally, 
we satisfy the reproducibility and validity require-
ments of complexity theory and offer convincing ev-
idence that the brain routinely uses many of the 
same modules to assemble different disorders. 

Two things bear mentioning.  It takes a large number 
of different modules to produce a disorder and all 
disorders draw many of their modules from what 
appears to be a common pool.  In effect, a given ab-
normal module – like many genes - can produce 
more than one outcome.  The challenge for biology 
in assembling a disorder is to get the right mix of 
markers and emergent properties to produce a given 
set of symptoms.  Since a given disorder is reproduc-

ible within a population, the same or closely similar 
algorithm must be conserved and in play to produce 
a recognizable phenotype.  This being the case, it 
should be possible to unfold the complexity of a dis-
order back to the genome and in so doing recon-
struct the causative algorithm.           

Move 29 included a summary of the disease process 
based on community graphs (6.10-6.17) and the fre-
quencies of shared markers (Table 6.3).  If we equate 
frequency of occurrence to its importance in the dis-
ease process, then the hippocampus emerges as the 
most influential player (Figure 6.10).  Does this mean 
that disorders of the brain may not appear in the 
absence of an abnormal hippocampus or that an ab-
normal hippocampus must exist to trigger the disor-
der of other parts, such as the amygdala, caudate, 
and putamen?  Although such questions remain be-
yond the reach of the current databases, our recent 
progress in working out a quantitative relationship of 
diagnosis to prediction (Chapter 5) becomes increas-
ingly relevant. 
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Chapter 7 

Caveats 

Biology explores life as a complexity, whereas we – 
as scientists - prefer to pursue it as a simplicity.  This 
schism between reality and what we choose to per-
ceive as reality provides fertile ground for cultivating 
caveats. 

A caveat is a warning.  It scratches beneath the sur-
face to uncover hidden dangers, ambiguities, and 
half-truths.  As soon as we leave simplicity and take 
even a single step toward complexity, many of our 
current perceptions face challenges.  What we once 
imagined to be possible often becomes impossible 
and impossible possible.  This can force us, for ex-
ample, into uncomfortable positions by questioning 
what we perceive to be true.  In short, caveats have 
the nasty habit of looking at well-established 
“truths” and seeing reckless assumptions.    

7-1 Change 

Assumption: Change is simple, not complex. 

If we are not measuring or estimating a volume, sur-
face, length, or number of particles directly, detect-
ing a biological change can become problematic.  
When collecting biological data as concentrations 
and using them directly to detect changes, we are 
assuming that they behave as simplicities.  If true, 
then both concentrations (complex) and absolute 
values (simple) would always give the same results.  
This, of course, is not the case (Chapter 1).  The pay-
back for making this assumption is a literature pol-
luted with bias, misinformation, and contradiction.   

7-2 Stereology 

Assumption: Stereology can eliminate the ambigui-
ty of concentrations by evaluating hierarchy equa-
tions.  

In theory, yes, in practice often no.  Hierarchy equa-
tions carry the assumption that all the references 
spaces in play - the denominators of the concentra-
tions - will cancel even when they carry very differ-

ent distortions (biases).  This assumption, when put 
to the test, carries a substantial risk (Chapter 4). 

7-3 Data Points 

Assumption: The best way to detect a biological 
change is to divide an experimental data point by 
that of a control. 

In effect, this universally accepted approach to stud-
ying biology is seriously flawed.  Change in biology 
involves a forest, not just a few trees.  Given the 
connectivity of its parts and the rules in play, biology 
creates a highly dispersed pattern of change, rather 
than changing just a few of its parts in isolation.  As-
suming that we can interpret a change by following 
the behavior of one or a few parts misses the mean-
ing of a biological change altogether (Chapters 3-6).  
In a complexity, change exists as a pattern wherein 
biology creates new relationships of parts to connec-
tions.   

7-4 Data Equivalency 

Assumption: Data collected from living and nonliv-
ing sources are compatible. 

In view of the findings presented in Chapter 4, this 
assumption appears indefensible.  Quantitative data 
collected from living and nonliving sources were 
found to be largely incompatible.  Although the re-
sults presented in Chapter 4 require independent 
confirmation, they come from the best data current-
ly available - refereed research produced by experts.   

A key insight to come from Chapter 4 is that a gold 
standard coming from living individuals allows us to 
minimize the effect of biases produced post-
mortem.  Such a standard provides corrections that 
can convert incompatible data sets into compatible 
ones (Figure 4.11).  By making data derived from 
living and nonliving sources interchangeable, we put 
a large portion of the biology literature back in play 
(Chapter 4).  This becomes an important issue be-
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cause extracting patterns on our way to the genome 
will rely heavily – by necessity - on post-mortem da-
ta obtained from light and electron microscopy with 
stereological methods.  

7-5 Volume Independent Methods 

Assumption: Detecting changes reliably in post-
mortem biology with stereology is limited to the 
volume independent method of counting – the frac-
tionator (Gundersen et al., 1988).   

This statement is true, but only as long as the vol-
ume dependent estimates (V, S, L, N, V/V, S/V, L/V, 
and N/V) continue to carry the bias of the volume 
distortion.  By switching to patterns based on ratios, 
multiple solutions to this problem of volume de-
pendency can be identified and applied (Chapter 4; 
Bolender, 2013).        

7-6 Reproducibility 

Assumption: Reproducibility of results at the global 
level cannot be expected to occur routinely with 
biological data. 

In the absence of reproducibility, biological data be-
come subject to disbelief.  Moreover, such a defi-
ciency keeps us in a weak position.  When multiple 
outcomes exist for the same experiment, we must 
decide which one to believe.  This pushes us into 
making choices that are often difficult to defend. 

We know that detecting biological differences re-
quires sample sizes sufficiently large to overcome 
the variation of a population and that such variation 
is influenced by random (imprecision) and systemat-
ic (bias) errors.  We also know that biases can 
change and that variation in biology exists within 
and between subjects.      

If, instead, we start with the results and identify a 
data set capable of delivering widespread reproduc-
ibility, then it would appear that we have tapped 
into an information source wherein the major 
sources of variation are minimized.  Our databases 
become such a source when the same mathematical 
markers appear repeatedly at a global level.  Since 
such duplicate markers occur in the tens of thou-
sands, reproducibility appears to be an inherent 

property of biology.  As such, mathematical markers 
represent a highly reproducible form of biological 
data (Chapters 4-6).   

Mathematical markers also pass notably harder tests 
of reproducibility.  Usually, measures of variance 
involve only two variables (one data point for the 
control and another for the experimental), whereas 
mathematical markers routinely demonstrate repro-
ducibility with substantial numbers of duplicate rati-
os comparing two (data pairs), three (triplets), and 
four (quadruplets) numerical variables at a time.  
Such results offer evidence at a global level that bi-
ology is running a very tight ship, wherein strict rules 
of connectivity exist and are being obeyed.            

7-7 Biological Variation 

Assumption: Biological variation severely limits our 
ability to detect small differences in the human 
brain. 

The IBVD includes – online - an extensive collection 
of scatter plots summarizing data collected from var-
ious parts of the brain.  They demonstrate – with 
upmost clarity - that the volume of the same part 
can vary enormously from one individual to the next.  
In fact, the data points create amorphous clouds of 
points with little hint of order.  Detecting significant 
differences between such diffuse clouds of data of-
ten becomes a largely hopeless exercise.  These scat-
ter plots remind us that biology gives the brain con-
siderable leeway in making an individual part, a pat-
tern we choose to identify as biological variation. 

Our response to such variation is to design experi-
ments in ways that allow us to detect significant dif-
ferences by relying on a variety of statistical ap-
proaches.  However, a curious uneasiness surrounds 
this type of solution.  Something appears amiss.  
Why would biology - so committed to optimizing 
outcomes - tolerate such apparent disorder?  Is it 
possible that the biological variation associated with 
these isolated data sets is merely a construct of our 
own imagination?  If our isolated data display gener-
ous amounts of biological variation, will biology – 
when we address it as a complexity – go along with 
our definition of its variation?         
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A following worked example shows how we can use 
complexity theory to answer such questions.  Going 
from reductionism to complexity is like going from 
chaos to order.  We can see this transformation oc-
cur by plotting data taken from the IBVD.  Figure 7.1 
illustrates 61 estimates (control and experimental) 
for the volume of the amygdala, sorted according to 
size.  The chaos appears in the figure as a broad 
range in the individual values plus the expected dis-
continuity produced by the data carrying different 
units. 

 

Figure 7.1 MRI estimates of volume for the human amygdala 
display a pronounced biological variation.  In the absence of 
connections, the isolated data become chaotic.  Notice that the 
plot is log-log (From Bolender, 2012). 

If we add back the connections, by creating ratios 
between the left and right parts of the amygdala, the 
intrinsic order of the complexity begins to reappear 
(Figure 7.2). 

 

Figure 7.2 When expressed as ratios, the MRI data of Figure 7.1 
display a high degree of order, as detected by a power regres-
sion with an R

2
=0.9994 (From Bolender, 2012).  Notice that the 

equation is almost linear (1.0) with its slope of 0.9994.   

Next, we can calculate a triplet ratio (X:Y:Z) wherein 
X is set equal to one.  This allows us to express the Y, 
Z data as a repertoire equation (Figure 7.3). 

 

Figure 7.3 After forming the ratio X:Y:Z where X=1, Y (left) is 
plotted against Z (right).  The result is a linear equation with an 
R

2
=0.9995 (From Bolender, 2012).  Were biology using an equa-

tion to define the relationship of the left amygdala to right, it 
might be using this one.  

Notice in Figure 7.3 that the range of the data has 
been compressed by orders of magnitude (compared 
to Figure 7.1) and that the two parts approximate 
linearity (R2=0.9995).  Most of the data now differ by 
less than five percentage points.   

If Figure 7.1 represents chaos and Figure 7.3 order, 
then we want to be somewhere in between near the 
edge of chaos, the place where the most interesting 
things happen (Walthrop, 1992; Kauffman, 1995).  
This final step consists of going from repertoire val-
ues (Figure 7.3) to decimal repertoire values (Figure 
7.4).  Notice what happens.  All the data shown in 
Figure 7.1 condense into a single ratio (0.4:0.5).  

The example illustrates how complexity theory can 
optimize the effectiveness of our data.  The original 
reductionist data displayed biological variation on a 
grand scale (Figure 7.1), whereas the same data 
viewed in a complex setting detected mathematical 
patterns (Figures 7.2-7.3) with little if any biological 
variation.  Finally, optimizing the data globally identi-
fies an underlying design principle of biology (Figure 
7.4).  The amygdala of the human brain in health and 
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disease exists left to right in the ratio of 1:1.25; it 
represents a biological rule.  By knowing such rules, 
we have a far better chance of figuring out where 
they come from.   

This set of figures suggest that biological variation 
severely limits our ability to detect small differences 
in the human brain – but only when we agree to ac-
cept the chaos created by reductionism and by a sta-
tistical construct of our own making.  In contrast, 
biology, cannot afford such extravagant behavior.  
Biological variation certainty exists, but not in the 
bloated amounts we choose to assign to our data.              

 

Figure 7.4 A single decimal repertoire value (ratio) for the 
amygdala (Y:Z) - left vs. right – summarizes the amygdala data 
across many different publications and diseases.  Notice that 
all 61 data points are now represented by a single ratio (Y:Z = 
0.4:0.5).  Multiple copies of this mathematical marker - amyg-
dala1amygdalaleft0.4amygdalaright0.5 – exist in the MRI data-
base (From Bolender, 2012). 

7-8 Experiments 

Assumption: The information derived from a single 
experiment provides enough information to make 
meaningful interpretations. 

Since a biological change triggers multiple events, 
following the behavior of just a few variables fails to 
capture the global nature of change.  Interpreting a 
biological change as a complexity is an operation 
better suited to large-scale databases where data 
can be interpreted by identifying analogous patterns 
and cross correlations.  Within the space defined by 
a parallel complexity, for example, we interpret what 
we do not know within the framework of what we 
do know.  In such a setting, databases become cen-

tral to our task of setting a scientific argument and 
defending its conclusions.   

7-9 Modifying the Human Genome  

Assumption: The human genome can be modified 
responsibility in the absence of detailed phenotypic 
information. 

In a complex system, where small perturbations can 
result in large effects and produce unintended con-
sequences, this proposition is likely to get us into 
deep trouble.  Since our manipulation of genomes is 
already well underway in plants and animals, track-
ing and interpreting the consequences at the level of 
the phenotype would seem to be an essential com-
ponent of the process.  Complexity in biology is the 
product of a finely tuned machine that may or may 
not respond positively to our reprogramming efforts.  
Ignoring this complexity ignores the certainty of un-
intended consequences.         

7-10 Published Research Findings   

Assumption: The biomedical sciences enjoy a dis-
tinguished record of success.   

“Why most published research finding are false.”  
Such is the title of a now famous paper by J. P. A. 
Ioannidis (2005).  He maintains that research find-
ings may be little more than accurate measures of 
the prevailing bias.  Moreover, at a recent Peer Re-
view Congress, he noted that a meta-meta-analysis 
related to cancer research shows that the scientific 
studies are “correct” in almost no cases.  He also 
reported that linking genes with particular diseases 
are correct only 1.1% of the time and noted that 
both biomarkers and prediction models for diseases 
have dismal records of success.  In an analysis of bias 
in 17 million papers, he detected 235 sources of bias.  
After raising a red flag, he continues to wave it vig-
orously.  Corporations have also become wary of 
published data.  Amgen, for example, found that 80-
90% of preclinical studies could not be replicated.     

In a recent study, Colquhoun (2014) points out that 
accepting a P=0.05 leads to in incorrect result at 
least 30% of the time.  Moreover, he suggests that 
underpowered experiments will be wrong most of 



96 

 

the time.  In fact, our time honored tradition of ac-
cepting a significant difference at p0.05 appears 
well on its way to becoming a relic of a bygone era.  
A recent editorial published in Basic and Applied So-
cial Psychology (2015) declared the null hypothesis 
significance test to be 'invalid' and has banned it 
from future papers submitted to the journal.   

Statisticians appear to want reproducibility support-
ed by independent validation.  This requires substan-
tial reductions in methodological bias and biological 
variation, goals largely inconsistent given our current 
theory structure.  We have witnessed throughout 
this book the mischief being created by these uncon-
trolled sources of noise.  Comparing biological con-
centrations produces incorrect results about 50% of 
the time (Chapter 1), ignoring valences  distorts re-
sults (Chapter 2), absolute estimates carry volume 
distortions (Chapter 4), post-mortem estimates do 
not correspond to those coming from their living 
equivalents (Chapter 4), biological variation is al-
lowed to run rampant (Chapter 7), and “…most pub-
lished research findings are false.” (Chapter 7).     

7-11 Biology as a Science 

Assumption: Biology, which has evolved into a de-
scriptive science, cannot be expected to address 
problems at a fundamental level. 

Such a statement is true for a theory structure based 
on reductionism, but not for one based on complexi-
ty.  The responses to the caveats listed above derive 
from a complex biology operating on a solid, math-
ematical foundation.   

7-12 Summary of Chapter 7 

The point in listing caveats is to call attention to the 
present state of our science.  Currently, we are fail-
ing miserably on a number of fronts because we te-
naciously hold to the belief that we can study a 
complexity as a simplicity.  If parts and connections 
define a complexity and we throw away the connec-
tions, then the complexity ceases to exist.  In such an 
artificial setting, we can study biological parts, but 
we cannot study biology.  Curiously, we remain un-
aware of the fact that biology can exist as a science 
only when it exists as a complexity.        

In addressing these caveats, our best option is to 
reinvent biology as a quantitative discipline operat-
ing within a theory structure based on complexity.  
Although this approach may seem difficult and intim-
idating at first, it actually makes our job much easier 
and far more effective.         
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Chapter 8 

Theory of Biological Complexity 

8.1 Introduction 

The overarching principle of the new theory is that it 
takes a complexity to solve a complexity.  This means 
that to test the theory empirically we need to con-
struct a parallel complexity as close to the original as 
possible, relying exclusively on the rules that exist 
first in biology and then mirrored in our reconstitut-
ed complexity.  The design-based sampling methods 
of stereology play an important role in this building 
process by providing unbiased sampling and offering 
access to parts of all sizes.   

Complexity is an unfamiliar place.  New rules apply, 
our perceptions change, and we ask and answer 
questions differently.  The first order of business is 
to learn the rules of the game, which in science con-
sists of generating a new theory structure.  This rep-
resents an ongoing process wherein the theory 
evolves in step with the discovery process.   

Recall that the fundamental building blocks of a bio-
logical complexity include parts and connections.  
Volumes, surfaces, lengths, or numbers define the 
parts quantitatively and ratios derived therefrom the 
connections.  From this simple beginning, the com-
plexity of an organism grows as the parts and con-
nections cascade throughout the hierarchical levels 
of an organism.  Since everything consists of the 
same basic building blocks and all the blocks are 
connected, our parallel complexity begins to resem-
ble the original biology – at least on a modest scale.  
Testing the theory consists of looking for persistent 
patterns - locally and globally – and then using these 
patterns to define the rules of the game.     

A collection of working lists, including goals, re-
quirements, basic principles, definitions, derivatives, 
first principles, and rationale summarize the pro-
gress to date in constructing this new theory struc-
ture. 

8.2 A First Principles Approach 

Biology – as a science – can be said to derive from 
first principles if it relies on the basic and established 
laws of nature.  In the absence of such principles, 
biology defaults to the models and assumptions 
driven largely by convenience.   

Can we derive biology from first principles?  The an-
swer is yes.  When we bring the power of data com-
ing from thousands of highly skilled investigators 
into conjunction, the basic rules and laws of biology 
appear almost effortlessly.  This is the story told by 
the preceding chapters.      

The argument for a first principles approach be-
comes even more compelling because of the oppor-
tunities it creates.  If the biology enterprise – on a 
scale of one to ten – is currently winning at a level of 
one or two, what would happen if we moved it up a 
notch?  Innovation and discovery would begin to 
explode.  Why? 

An insightful answer comes from Elon Musk.  “We 
normally think by analogy - by comparing experienc-
es and ideas to what we already know - but there’s a 
better way to innovate.  I think it’s important to rea-
son from first principles rather than by analogy.  The 
normal way we conduct our lives is we reason by    
analogy. [With analogy] we are doing this because 
it’s like something else that was done, or it is like 
what other people are doing.  [With first principles] 
you boil things down to the most fundamental 
truths…and then reason up from there.” 

Musk continues: “The benefit of first principles think-
ing?  It allows you to innovate in clear leaps, rather 
than building small improvements onto something 
that already exists.” [ However, he warns us about 
using first principles for innovating.] “It takes a lot 
more mental energy.”  

First principles become one of the many rewards to 
come from playing the complexity game with biolo-
gy.  They allow us to approach biology as a mathe-
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matical science, create universal databases from the 
biology literature, understand the nature of change 
in biology, identify widespread connectivity, work 
out data driven methods for clinical diagnosis and 
prediction, harmonize living with post-mortem data, 
and unfold the disease process in the human brain.   

8.3 Theory of Biological Complexity 

In its simplest form, the theory states that it takes a 
complexity to solve a complexity.  We can define a 
biological complexity mathematically as a distinct set 
of elements (parts and connections) that combine to 
form patterns (e.g., mathematical markers) capable 
of scaling – by rule - at both local and global levels.  
Typically, biology displays its complexity as a stoichi-
ometry based on the ratios of it parts.  It applies this 
rule to create both order and disorder.  For our pur-
poses here, we define a rule as a mathematical pat-
tern, one that exists simultaneously at local and 
global levels.      

8.4 Theory Structure 

The theory structure includes a current set of guide-
lines for exploring biology as a complexity.  They de-
rive from the published data of refereed publications 
– numbering in the thousands.  The following list 
summarizes the goals evolving with the theory struc-
ture.   

8.4.1 Goals 

 Generalize the data of the biology literature.  

 Define and assemble a data-driven approach 
to the basic and clinical sciences. 

 Identify mathematical patterns in biology. 

 Explore biology as a rule-based system. 

 Use published data to create a parallel com-
plexity based on rules intrinsic to biology. 

 Minimize bias in experimental systems.  

 Minimize biological variation. 

 Maximize reproducibility. 

 Remove post-mortem distortions by harmo-
nizing pre and post-mortem data.   

 

 Demonstrate with practical examples the ef-
fectiveness of a new approach to problem 
solving based on empirical data and guided 
by the rules of biology.  

 Capture biological phenotypes mathemati-
cally and use them to diagnose and predict 
outcomes. 

 Evaluate current methods of collecting and 
interpreting data in the basic and clinical sci-
ences. 

 Assemble diagnostic databases from the bi-
ology literature capable of diagnosing disor-
ders of the brain correctly - 100% of the 
time. 

 Scale the application of mathematical mark-
ers from small data sets to large. 

 Develop methods for extracting meaningful 
patterns from large data sets. 

 Identify algorithms and strategies used by 
biology to create disorders of the brain.  

 Develop and distribute software and data-
bases that can accelerate productivity by 
leveraging published data into problem-
solving tools. 

 Develop a strategy for connecting pheno-
types to genotypes. 

 Optimize outcomes. 

8.4.2 Data Requirements 

 Collect biological data with unbiased sam-
pling methods. 

 Express data as volumes, surfaces, length, or 
numbers.  Concentration data formed from 
these and other parameters are subject to 
specific rules and limitations (See earlier re-
ports; Bolender 2001-2015).  Note: Most da-
ta types in biology readily meet this re-
quirement, although digging into the units 
may be required.    

 Assemble data as connected sets, consisting 
of ratios, mathematical markers, strings, 
networks, et cetera.  

 Integrate data quantitatively within and 
across hierarchical levels. 

 Use a common format – based on ratios - to 
organize and generalize data. 
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 Configure data so that they can detect the 
same pattern locally and globally. 

 Operate within the bounds of a complexity 
parallel to the one defined by biology. 

 Correct the volume distortions associated 
with post-mortem data. 

 Tune data sets – by applying filters - to ena-
ble diagnostic and predictive properties. 

 Store and distribute data in digital form. 

 Encourage open access to published data in 
multiple formats.         

 8.4.3 Basic Principles and Definitions 

 A biological complexity consists of parts and 
connections distributed hierarchically.   

 Complexities can be local, global, and nest-
ed.   

 A biological complexity can unfold into 
smaller patterns or fold into larger ones. 

 Parts and connections define the organiza-
tional framework of biology as distinct and 
quantitative patterns.  As such, they repre-
sent a rule-based system. 

 A parallel complexity represents a data-
driven construct designed specifically to em-
ulate biological complexity. 

 Ratios and derivatives thereof (i.e., mathe-
matical markers) serve as the basic units of 
information and signal the presence of rules 
in a parallel complexity.   

 Mathematical markers include parts (names) 
and connections (ratios) expressed as alpha-
numeric strings that can be snapped togeth-
er to create compound strings. 

 An artificial complexity, which exists in post-
mortem data, is a product of the methods of 
specimen preparation and data collection. 

 Parts display quantitative (volume, surface, 
length, number) and qualitative properties 
(names, locations).   

 All parts are connected or connectable by 
forming ratios. 

 A ratio defines the relationship of one part 
to another.  Moreover, ratios define nested 
and modular sets of connections within and 
across hierarchical levels.  

 Parts and connections form patterns that 
scale in size, beginning with a ratio of two 
parts and ending with a ratio of n parts - 
where n would include an entire organism.   

 Patterns captured as mathematical markers 
increase their specificity as the number of 
parts and connections increase. 

 In living subjects, mathematical markers rou-
tinely detect the same patterns (e.g., mark-
ers) locally and globally. 

 In post-mortem subjects, mathematical 
markers infrequently detect the same local 
and global patterns, unless the data are cor-
rected for volume distortions. 

 Prediction in complex living systems involves 
interactions with parallel complexities capa-
ble of producing a correct diagnosis 100% of 
the time. 

 Valances describe the ability of the same set 
of parts to form different numerical ratios 
(connections).  They reflect biological rules 
of stoichiometry.  

 Biological variation is a construct of its theo-
ry structure.  Reductionism maximizes varia-
bility, whereas complexity theory minimizes 
it.   

 In biology, change is defined by patterns. 

8.4.4 Derivatives 

A derivative includes - as a minimum - the names of 
two parts and their corresponding values formed 
into a ratio.  In forming a ratio, the original published 
values may be used directly (repertoire value) or 
converted into a decimal step (decimal repertoire 
value).  Data pair ratios take the form X:Y, data tri-
plets X:Y:Z, and data quadruplets X:Y:Z:Q.  Mathe-
matical markers add the names of the parts to the 
ratios: AX:BY, AX:BY:CZ, and AX:BY:CZ:DQ.     

Data Pairs, Triplets, and Quadruplets can be formed 
by inspection or by taking all possible permutations 
of the names of the parts – to which numerical val-
ues are subsequently assigned.  When expressed as 
a decimal step (decimal repertoire value), the values 
combine with names to form mathematical markers.  
Such markers, which can use data before or after the 
application of corrections for the volume distortions 
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of post-mortem material, can display multiple va-
lences. 

8.4.5 First Principles (Rules) 

To derive biology from first principles, we first need 
to know the principles.  Such principles translate into 
biological algorithms that define biology as a com-
plex adaptive system.  They turn an information poor 
catalogue (genome) into an information rich mas-
terpiece (phenotype). 

Patterns that appear repeatedly identify biological 
rules.   

Rule 1: Biology is a complexity consisting of parts 
and connections.   

Rule 2: Biology defines and controls its complexity by 
using ratios of one part to another.   

Rule 3: Biology forms strings, modules, and networks 
of ratios.  

Rule 4: Biology allows the same two parts to form 
different ratios (valences). 

Rule 5:  Biology allows considerable variation in the 
size of its parts, but not in the relationship of one 
part to another.  Typically, it maintains a given stoi-
chiometric order, except when undergoing a change 
– e.g., growth, aging, and disease.  

Rule 6: Biology defines complexity with modular 
structures divisible down to two parts with two val-
ues – the ratio (X:Y).     

Rule 7: Biology consists of nested complexities, 
which can be unfolded and refolded mathematically.   

Rule 8: Biology maintains patterns with redundant 
connectivity. 

Rule 9: Biology defines change as a complex pattern. 

Rule 10: Biology optimizes outcomes. 

Rule 11: Biology grows in distinct steps, wherein pat-
terns alternate between active growth (dynamic ra-
tios) and inactive growth (stable ratios).   

Rule 12: Biological parts can serve as dominant cen-
tral organizers, wherein they form connections (rati-
os) with many other parts. 
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Chapter 9 

Recommendations 

9.1 Background 

The marching orders for the Enterprise Biology Soft-
ware Project came largely from the Biomatrix Group 
(Morowitz and Smith, 1987).  We were charged with 
the task of organizing the published data of biology 
in such a way as to reveal connections, generaliza-
tions, and new theory structures.  When we inter-
pret published data as ratios, we can create a uni-
versal biology database capable of producing such 
outcomes in accord with the mathematical precepts 

of biological complexity.   

9.2 Strategy 

In this chapter, we extend the original directive of 
the Biomatrix by including additional recommenda-
tions.  This upgrade seeks to establish the quantita-
tive phenotype as a major player in the biology en-
terprise - a natural extension of an ability to interact 
with biology mathematically.   

Recall that quantifying a phenotype required two 
databases.  The first database, which came from the 
stereology literature, demonstrated that post-
mortem data - when expressed as ratios - could de-
tect biological rules locally.  Detecting the same rules 
both locally and globally, however, required a se-
cond database derived from the MRI data of living 
subjects (IBVD).  While stereology got us into the 
complexity game, we needed MRI to score.  Both 
databases will be needed to win.       

Using these two databases, we were able to upgrade 
our published research data by making the transition 
from one theory structure to another – from simple 
to complex.  As a result, we have begun to redefine 
biology as a data driven, rule based, and quantitative 
science.  By allowing relational databases to provide 
a universal framework for designing, analyzing, and 
interpreting experiments, we can effectively lever-
age the successes of the past and present to plan the 
future. 

9.3 Issues 

As a complex, information intensive science, biology 
requires unfettered access to large amounts of pub-
lished data stored in relational databases.  Herein 
lies a problem in that most of our research data con-
tinue to exist behind paywalls and not in relational 
databases.  Our job – just as important as our re-
search – will be to find an accommodation wherein 
the current win-lose situation can become win-win.  
Perhaps the easiest and most effective way of re-
solving this issue is to add a new requirement to the 
publishing process, one that includes entering data 
into public databases.     

It would be a disservice to everyone to allow an ad-
versarial relationship to develop between authors 
and publishers.  Biology is clearly on a path to be-
coming an information science and everyone will 
benefit enormously by allowing this transition to 
occur.         

9.4 Current Reality 

Our current theory structure in biology is incom-
plete.  It is designed to take biology apart, but not to 
put it back together.  Reductionism produces vast 
numbers of isolated parts that have lost an essential 
property - connectivity.  All complexities define 
themselves mathematically with parts and connec-
tions and biology is no exception.  Remove the con-
nections, and biology ceases to exist as a complexity.  
Consequently, our literature contains an enormous 
amount of information about parts, but surprisingly 
little about biology as it actually exists.  Curiously, 
this basic truth remains largely unappreciated within 
the biology community.         

Fortunately, the problem has a simple solution.  We 
have the parts, but not the connections.  Put the 
connections back, and we put back complexity.  In 
return, we gain access to the ultimate problem solv-
er – biology expressed as a mathematical pheno-
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type.  The following recommendations serve as help-
ful guidelines. 

9.4 Recommendations 

9.4.1 Theory Structure  

 Begin to make the transition to a new theory 
structure for biology, one that combines 
mathematically the principles of both reduc-
tionism and complexity. 

 Encourage the adoption of a complex ap-
proach to problem solving across all seg-
ments of the biology enterprise.  

9.4.2 Technology 

 Make the transition from small to big data. 

 Encourage biology to become an infor-
mation science, one driven by data instead 
of methods. 

 Move published data onto a relational data-
base platform or a suitable equivalent. 

 Support the development of visual methods 
for analyzing large data sets. 

9.4.3 Publication 

 Adopt a two-tier system of publishing in the 
biological sciences – one for data and the 
other for traditional manuscripts.     

 Improve the impact, value, and credibility of 
funded research by publishing data online.  

 While biological databases clearly belong in 
the public domain, private companies will 
continue to serve an essential role in review-
ing, editing, publishing, distributing, and ar-
chiving biological research. 

9.4.4 Data Management 

 Store data collected with reductionist meth-
ods in the tables of relational databases.   

 Translate isolated data into ratios, mathe-
matical markers, et cetera; store them in da-
tabase tables. 

 

 Use ratio based data sets – instead of con-
centrations and absolute value - to identify 
change and to characterize phenotypes. 

 Use standardized templates when trans-
forming and interpreting data sets. 

 Provide specific guidelines for submitting da-
ta from the basic and clinical sciences to uni-
versal databases.  

 Provide online facilities for entering, storing, 
and retrieving peer reviewed research data. 

 Encourage a robust, quantitative approach 
to biological complexity by adding stereology 
to the biology curriculum. 

9.4.5 Data Interpretation 

 Interpret new research data within the 
framework of universal biology databases. 

 Interpret data as connected patterns, rather 
than isolated data points. 

 Interpret data within the framework of par-
allel complexities – or their equivalent. 

 Encourage the reuse and reinterpretation of 
published data. 

9.4.6 Support 

 Develop comprehensive and long term fund-
ing for online literature databases. 

 Use a common database design for the basic 
and clinical sciences. 

 Introduce universal data compatibility into 
the design of information systems. 

 Introduce something akin to Legacy Grants 
for senior investigators to move their pub-
lished data into databases – as envisaged by 
the Biomatrix Project (Morowitz and Smith, 
1987).    

 Encourage the development of large-scale 
databases for biomedical research. 

 Embark on a program designed to create an 
information space for the phenotype similar 
in size and importance to the one we already 
have for the genotype. 



103 

 

Epilogue  

When we take a hard look at our current reduction-
ist approach to biology, we discover that the data we 
collect are often mathematically unstable.  The rea-
son is simple.  Biology runs mathematically as a 
complexity wherein both parts and connections are 
in play.  In contrast, we remove the connections and 
the complexity and then try to run our business with 
just the parts.  Consequently, our uneven record of 
accomplishment as a science should not come as a 
surprise.  We have become very good at studying 
biological parts, but know surprisingly little about 
how to study biology as a complexity.     

With the benefit of hindsight, we can risk a sweeping 
generalization.  Biology – as a science – is more often 
than not incapable of delivering accurate and repro-
ducible information about phenotypes – including 
the way they change.  Our traditional methods are 
simply not up to the task.  They can inject so much 
noise that the original biological data can become 
unintelligible.  Biases contributed by faulty sampling, 
misinterpreted data, ignored valences, post-mortem 
distortions, and overblown biological variations only 
begin to tell the story.  In fact, our methods create a 
vast complexity of their own, one that we have come 
to accept as a cost of doing business.   

The cost, however, is far too high.  Our self-imposed 
biases create a barrier, standing between biology 
and our charge to study it.  It makes biology look 
disorganized and indecisive, when, if fact, it is a truly 
elegant system based on rules and running – as it 
must - on a mathematical engine.  Remove – or at 
least minimize – this barrier and biology becomes a 
mathematical puzzle that we can learn to solve and 
replicate.  Parallel complexities, which provide ac-
cess to this puzzle, are already allowing us to har-
monize published data, unravel the diagnosis-
prediction problem, manage the crippling volume 
distortion issue of stereology, and explore the na-
ture of the disease process in the human brain.   

What did we learn by playing the complexity game 
with biology?   

We learned how to make transitions – from static 
journals to dynamic databases, from a methods 
driven science to a data driven science, from subjec-
tive data to objective data, from disconnected data 
to connected data, from noisy data to quiet data, 
from distorted data to corrected data, from small 
data to big, from imagined simplicity to complex re-
ality, and from chaos to order.  With each transition, 
we honed our skills as problem solvers. 

Why is it so important to approach biology as a 
complexity?  

Biology knows how to solve – or at least manage 
successfully – a wide range of extremely difficult 
problems, many of which we cannot even begin to 
imagine.  It accomplishes these remarkable feats 
within the framework of a rule-based system – hid-
den largely from view because of biology’s fondness 
for wrapping its complexities within complexities.  
The simplest way of understanding such complexity 
is to become that complexity.  Complexity theory, 
which allows us to test this idea with real world data, 
delivers a proxy for biology in the form of a parallel 
complexity.  Starting with a catalogue of published 
data (IBVD), we can calculate ratios and then tune 
them deliberately to achieve specific objectives.  
Since the success of this approach depends on data 
being as close to the original as possible, living pa-
tients become our most reliable source.  They give 
us a gold standard that we can defend both theoret-
ically and empirically.     

Perhaps, the most compelling argument for engaging 
complexity is that it allows us to learn the rules of 
the games we want to play.  Knowing biology’s rules 
provides access to large amounts of otherwise privi-
leged information.  Finding just a few rules has al-
ready provided enough information to reorganize 
the biology literature, minimize multiple sources of 
bias, and identify workable solutions to problems 
long considered as mission critical.  The real prize, 
however, will be the patterns, algorithms and math-
ematics biology uses to manage and advance its re-
lentless success as a complexity.  Just imagine, for 
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example, a world in which we understood how to 
optimize nested complexities containing astronomi-
cal numbers of interacting parts and connections.   

Given that our complexity game began with reduc-
tionism, it seems only fair to end with it as well.  Re-
ductionist theory has made a remarkable contribu-
tion to biology by allowing us to understand the 
many parts that make up living systems.  Since we 
now know the names, values, and functions of the 
parts in a variety of settings, the theory has done its 
job.  The time has come to move on and take the 
next step.  This requires defining a new set of goals 
supported by new theory structures.     

Since any new theory in biology must draw it 
strength from empirical data, it automatically be-
comes an extension of our current reductionist theo-
ry.  Complexity becomes the logical choice because 
we can put the biology literature back in play by 
simply returning the connections to its mountains of 
isolated parts.  Moreover, a complexity theory built 
upon the rules of an already successful biology finds 
itself in a position ready to deliver innovation 
throughout the enterprise.  Lest we forget, the point 
in playing the game with biology is not just to win, 
but also to identify launching pads that can ensure 
our future success.   

Our story is now well under way.  The commitment 
made at the outset to get ourselves into as much 
trouble as possible provided exactly the incentive we 
needed to find out what was broken and how to fix 
it.  We discovered that the same data viewed 
through different lenses delivers different outcomes.  
Complex problems viewed through simple lenses 
produce blurred images.  View these same complex 
problems through complex lenses and the solutions 
snap into focus with the expected crispness of a 
mathematical science.  Such is the argument put 
forward by this narrative.  It maintains that biology 
becomes an objective science when it behaves like 
one.  This includes having a theory structure with 
first principles firmly based on both theoretical and 
empirical arguments. 

Even a casual reader scanning these chapters can 
see that reductionist theory represents a dumbing 
down approach to investigative biology.  In retro-

spect, we seem to have invested so much for so long 
to learn so little.  Although every competent knows 
that the only way to get smarter is to play a smarter 
opponent, we have stubbornly done quite the oppo-
site.  We repeatedly choose simplicity over complex-
ity.  By rejecting this conventional wisdom, we be-
come free to chart new and more challenging direc-
tions.  As our databases grow in size and scope, we 
can and should aspire to emulate biology in ways yet 
unimagined.   

Biology becomes easier to understand when we 
treat its complexity as a mathematical jigsaw puzzle, 
with solutions in n-dimensional space.  Starting with 
the one-dimensional strings of mathematical mark-
ers, we can reconstitute complexities at higher di-
mensions by simply snapping together the pieces.  
Such an approach allows our published data to form 
two general sets of patterns, one local and the other 
global.  Although both sets can identify first princi-
ples, the global ones offer the advantage of repro-
ducibility and predictability.  Under the auspices of 
complexity theory, every publication becomes part 
of the larger whole and the biology enterprise grows 
smarter and more effective with each passing year.  
In effect, the theory structure defaults to success.                      

Biology also teaches us how to work faster and 
smarter.  Under reductionist rules, it took more than 
three years to produce a stable database for the ste-
reology literature (1998-2001) and even longer to 
extract informative patterns (2001-2011).  By taking 
our rules from biology, however, it took less than a 
week to generate a universal database from the 
IBVD, three months to find a solution to the diagno-
sis problem, a week to parse the disorders of the 
brain, and a few days to come up with workable so-
lutions to the volume distortion problems of stere-
ology.   

As scientists, we find ourselves in the curious busi-
ness of having to invent the future.  We do this by 
discovering new theory structures that allow us to 
solve otherwise intractable problems and to punc-
ture the tired assumptions of old theories.  Discov-
ery, however, can become a very slippery business 
because it tends to trigger unintended consequenc-
es.  Recall what happened as our story unfolded.  In 
a very rudimentary way, we used published data to 
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create software devices that allowed us to set up a 
communication interface with biology.  Such an out-
come was possible because stereology allowed us to 
quantify all the parts that biology uses to build itself.  
First, however, we had to discover that complexity 
emerges only after our data reach a critical mass.  By 
allowing large amounts of data to connect and inter-
act, patterns appeared that began to explain how 
biology orders itself and manages its business.  In 
turn, these patterns led to principles that gave us the 
all-important confidence to ask and answer harder 
questions.  Instead of having to game the system as 
an outsider, we became an insider by adapting to 
the system we were trying to understand.  By estab-
lishing mathematical links to biology, we end up on 

the same page, share the same view of reality, and 
become allies.  Biology’s job is to assemble and 
manage a dazzling array of phenotypes, each one 
defined explicitly as a complexity of parts and con-
nections.  Our job becomes one of promoting the 
success of biology by sharing its problems and help-
ing to find best solutions.  This partnership, which 
identifies a core principle of complexity theory, will 
contribute importantly to the long-term success of 
biology and of our enterprise. 

 

When we take biology apart, we see one thing, but 
when we put it back together, we see something en-
tirely different.

 



106 

 

Glossary 

Working Definitions 

 
ABSOLUTE DATA – Data expressed as a volume, sur-
face, length, or number. 

ALGORITHM – A step-by-step sequence of opera-
tions designed to perform a specific task. 

ALPHANUMERIC – A set (or string) of characters con-
taining letters and numbers. 

ARTIFACT – An object made by humans; a distortion 
produced by an investigative method. 

BACK-END – The server side as opposed to the work-
ing end (frontend). 

LAMBERT-BEER LAW – A method widely used to 
measure concentrations.   

     
  

 
    ,  

where I0 is the intensity of the incident light, I the 
intensity of the emergent light,  the extinction coef-
ficient, l the length of the light path, and c the con-
centration. 

BIAS – Identifies anything that produces systematic 
variation in research data; a systematic rather than a 
random distortion of a statistic.   

BIG DATA – Data sets too large to manipulate with 
traditional methods or tools. 

BLUEPRINT – A detailed outline or plan of action; a 
design. 

BUBBLE – Identifies anything that lacks firmness, 
substance, or permanence; often an illusion or delu-
sion.  In biology, they derive from faulty assump-
tions.   

BUTTERFLY – In chaos theory, the butterfly effect 
exemplifies the dependence of events on initial con-
ditions; a small change can cause a large effect.  To 
wit, the turbulence created by a butterfly triggers a 
storm far away.   

CHAOS THEORY – A branch of mathematics that 
deals with complex systems.  Such systems display 
an underlying order, wherein very small events can 
trigger very complex outcomes. 

COEFFICIENT OF DETERMINATION – A measure of 
the goodness of fit between dependent and inde-
pendent variables in a regression analysis; abbrevi-
ated R2. 

COMMUNITYGRAPHPLOT – Identifies related com-
munities (clusters) graphically. 

COMPLEX SYSTEMS – Composed of many connected 
parts.  They exhibit properties that emerge from the 
interaction of their parts, which usually cannot be 
predicted from the properties of the individual parts. 

COMPLEXITY THEORY – Complex behavior emerges 
from simple rules, producing large networks of in-
teracting parts. 

CONCATENATE – Linking things together in a chain, 
string, or series. 

CONCENTRATION – The amount of a constituent (or 
component) divided by the total volume of the ref-
erence or containing space; expressed per unit vol-
ume.  Reference spaces can also include surface, 
length, and number. 

CONNECTION – Something that connects two or 
more things.  In biology, connections can be defined 
as ratios derived from the properties of the parts. 

CONNECTION PHENOTYPE - Includes a set of parts 
(data pairs), plotted as a frequency distribution, and 
fitted to a polynomial regression.   

DATA PAIR – A ratio of two numerical values, which 
may include the names of the parts. 

DATA CAGE - A boundary condition imposed by the 
design of a parallel complexity capable of optimizing 
outcomes.  Such closed systems, for example, were 
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found to be 100% effective for diagnosing disorders 
of the brain.  Moreover, a data set contained within 
such a cage becomes predictive when allowed to 
interact with outside data.      

DATA-DRIVEN – Progress propelled by data, rather 
than by methods. 

DECIMAL REPERTOIRE EQUATION – The values of a 
repertoire equation fitted to decimal steps. 

DENSITY – A term used in stereology to describe a 
concentration. 

DESCRIPTIVE BIOLOGY – A qualitative approach to 
biology. 

DESIGN-BASED SAMPLING – Sampling independent 
of size, shape, orientation, and distribution; sam-
pling bias is minimized.  Every part of the structure 
has the same chance of being sampled. 

DESIGN CODES – Include ratios formed by dividing 
experimental by control values.  They identify pat-
terns of change.  

DISECTOR – A design-based method of stereology 
that uses an unbiased sampling frame to estimate 
the numerical density (N/V) of particles. 

DISRUPTION – To break apart or alter, thereby pre-
venting the existence of a normal. 

DISTORTED – Not representing the facts or reality; 
misrepresenting; false. 

DUPLICATE – One of two or more identical things. 

EMERGENT PROPERTY – Connected parts display 
new properties equal to more than those of the indi-
vidual parts; the whole is greater than the sum of 
the parts; properties irreducible to the constituent 
parts. 

EMPIRICAL – Identifies outcomes based on testing or 
experience rather than on theory.  

ENTERPRISE BIOLOGY SOFTWARE PROJECT (EBSP) – 
A project designed specifically to speed learning and 
discovery in the life sciences. 

FALSE NEGATIVE – Indicates mistakenly that some-
thing tested for is absent when it is present. 

FALSE POSITIVE – Indicates mistakenly that some-
thing tested for is present when it is not. 

FILTER – A device designed to remove specific com-
ponents. 

FIRST PRINCIPLE: A first principle can be a law upon 
which others are founded or from which others are 
derived.  It is a general truth, comprehending many 
subordinate truths, but not deductible from others. 

FOLD – To place together and entwine; to blend 
components; to bring from extended to compact. 

FRACTIONATOR – A design-based method of stere-
ology used for estimating particle counts; a system-
atic random sampling method. 

FRONT-END – User interface; the part of a software 
program with which the user interacts. 

GENERALIZATION – A general statement, law, princi-
ple, or proposition. 

GENOTYPE – Genetic constitution of an individual. 

GLOBAL – Involving all of something. 

GOLD STANDARD – The example by which others are 
judged or measured.   

HIERARCHY – A series of ordered groupings. 

IBVD – Internet Brain Volume Database 

INTACT TISSUE – Undamaged; unaltered. 

LADDER EQUATION – An exponential equation 
summarizing a set of rung (power) equations. 

MATHEMATICA – A computational software pro-
gram; Wolfram Research, Champaign, Ill. 

MATHEMATICAL CORE – Used herein to identify the 
quantitative rules to which biology adheres. 

MATHEMATICAL MAPPING – An element of a given 
set associated with an element of another set. 

MATHEMATICAL MARKER – An alphanumeric string 
designed to captures units of complexity specific to a 
given phenotypic state. 

METHODS-DRIVEN – An activity compelled by meth-
ods. 

NESTED COMPLEXITY – Complexity embedded in 
complexity.  Unfolding and refolding nested com-
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plexity represents a major undertaking of complexity 
theory.  The process consists of translating data sets 
into mathematical markers, storing them in a univer-
sal biology database, and applying filtering algo-
rithms.     

OBJECTIVE – Not influenced by personal feelings or 
opinions; identified with quantitative approaches. 

OPTICAL DENSITY – A measure of the extent to 
which a substance transmits light or other electro-
magnetic radiation.   

ORGANISM CODES – Identify patterns of connectivity 
in a given paper graphically. 

PARALLEL COMPLEXITY – A collection of mathemati-
cal markers serving as a proxy for biology; a proxy 
designed with a specific goal in mind (e.g., diagno-
sis).   

PATTERN – A repeated design; an arrangement or 
sequence; things arranged by rule. 

PERMUTATION – The way in which a set of numbers 
or things can be ordered. 

PHENOTYPE – The physical appearance of an organ-
ism. 

PLAYING FIELD – An database platform for playing 
complexity games with properties specified accord-
ing to the game’s rules; a field designed to solve a 
specific problem. 

POWERBUILDER – An integrated development envi-
ronment distributed by Sybase, Inc. (Emeryville, CA). 

PROXY – A substitute for another. 

QUADRUPLET MARKER – A mathematical marker 
consisting of four alpha and four numeric compo-
nents; expressed as a numerical ratio. 

QUERY BY EXAMPLE (QBE) – Query by example; a 
database query based on the items selected. 

RATIO – Relative magnitudes of two or more quanti-
ties. 

REDUCTIONIST THEORY – Assumes that complex sys-
tems can be completely understood in terms of their 
individual components (parts). 

REGRESSION EQUATION – The relationship between 
values X and Y from which the most probable value 
of Y can be predicted from X. 

REPERTOIRE EQUATION – Defines the quantitative 
relationship of values X to Y, wherein both the slope 
and the R2 of a power curve approach one.   

REPRESENTATIVE SAMPLE – A population that accu-
rately reflects the members of the entire population. 

RULE-BASED – A production system based on rules 
for storing, manipulating, and interpreting infor-
mation in a useful way.  

RUNG EQUATION – Data fitted to a power curve dis-
playing an R2 approaching one. 

SCIENCE – Extends knowledge of principles and 
causes. 

STEREOLOGY – A collection of mathematical meth-
ods for estimating  structures quantitatively. 

STOICHIOMETRY – Relationships existing as a ratio of 
small intergers. 

SUBJECTIVE – Coming more from the observer than 
from observations. 

THEORY – A well-substantiated explanation of some 
aspect of the natural world. 

TRIPLET MARKER - A mathematical marker consisting 
of three alpha and three numeric components; ex-
pressed as a numerical ratio. 

UNBIASED – When bias equals zero; lack of system-
atic error. 

UNBIASED DATA – When bias equals zero for the 
method of sampling and the material sampled.   

UNBIASED SAMPLING – A method designed to re-
move bias from the sampling procedure; design-
based sampling.   

UNFOLD – Open out; to reveal or display; lay open to 
view. 

UNIVERSAL BIOLOGY DATABASE – Contains biologi-
cal data expressed as ratios; a unified data set de-
rived from the biology literature. 

VALENCE – An ability of a given part to connect to 
the same part in different ratios. 
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