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SUMMARY 

The topic of the report this year is “Complexity theory applied to clinical diagnosis of the brain.”  In 
short, we will work through the steps of extending the clinical application of MRI from largely a descrip-
tive role (radiologist views images and writes reports) to an analytical one (software uses MRI data di-
rectly to diagnose disease).  The first part of the report describes a database that treats the brain as a 
complexity.  It captures disorders as mathematical markers by forming numerical ratios (X:Y:Z) accom-
panied by three named parts (AX:BY:CZ).  The raw data used to calculate these markers came from an 
MRI database (Internet Brain Volume Database (IBVD)) developed as part of the Human Brain Project 
(Kennedy et al., 2012).  The process consists of taking 1,630 data points from this database and then 
satisfying the large numbers requirement of complexity theory by transforming them into more than 
700,000 mathematical markers.  This gives us the phenotypic properties of twenty-four brain disorders, 
each expressed as a complexity in terms of the parts and connections.  Our first task will be to review 
the protocols developed for using these markers to diagnose disease.  In short, they consist of identify-
ing an unknown disease by entering published patient data into the diagnosis database and then match-
ing the unknown markers to known standards.  In turn, the results are tallied and the diagnosis goes to 
the disorder with the highest score.  The results thus far are most encouraging in that the software con-
sistently delivers the same diagnosis as the physicians.   

The second part of the report consists of analyzing the mathematical markers graphically in an attempt 
to uncover fundamental patterns associated with disease.  Here our goal becomes the development of a 
theory structure for disease based on complexity.  The analysis reveals that the brain uses a modular 
approach when assembling both normal and abnormal brains.  Data pairs, triplets, and now mathemati-
cal markers all detect a well-defined biological order (stoichiometry) based on parts and connections 
(Bolender, 2001-2012).  A new and potentially disruptive finding is that different diseases in the brain 
often display striking similarities.  Graphics clearly show that a considerable overlap exists in the parts 
and connections of many diseases, thereby suggesting common etiologies.  Consider, for example, 
schizophrenia.  Given its vast array of markers, it may be the most complex disease of the central nerv-
ous system – or at least the one with the largest published data set.  When its complexity is unfolded 
graphically, schizophrenia contains exact replicas – qualitatively - of at least six other diseases and close 
replicas of several more.  Is there a quantitative explanation?  Apparently, yes.  Schizophrenia shares 
large numbers of identical mathematical markers with those of its “embedded” diseases.  The larger pic-
ture to emerge from this analysis is that the disease process in the brain occurs as a well-ordered event, 
wherein putative mistakes in design combine to produce new diseases with new emergent properties.    
Perhaps the most unexpected finding of all, however, comes from the original MRI database (IBVD).  
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Since each mathematical marker consists of six variables, it seems remarkable indeed to discover that 
different papers routinely generate exactly the same mathematical markers (the current record stands 
at 36 duplicates).  Given this new found ability to phenotype the human brain in health and disease, we 
now have the option of using MRI data directly to diagnose diseases of the brain.  Considering the 
enormous complexity divide that currently exists between genes and phenotypes, patient care based on 
phenotypic data carries the potential of creating a new information industry from patient data, one that 
can contribute importantly to the emergence of an evidence-based medicine.    

 

INTRODUCTION 

Exploring the unknown in science requires a theory 
structure capable of defining the guiding principles, 
rules, and procedures that together create an envi-
ronment consistent with new discovery.  In biology, 
the experimental method and reductionism have 
advanced the science to its current level with re-
sounding success.  Together they have allowed us to 
accumulate vast amounts of new information by 
taking biology apart and characterizing its parts in 
great detail - up and down its hierarchy of size.  As a 
result, the biology enterprise has been built largely 
around isolated data points wherein change is usually 
detected by comparing one point to another or by 
fitting points to regressions.  This isolation, however, 
creates problems.    

Recall that the guiding principle of reductionism is 
simplification, wherein a very small sample is taken 
from a much larger whole.  In exchange for such 
access, we have been willing to forfeit the complexity 
of the whole.  Unfortunately, many of the problems 
we are trying to solve today require the complexity 
we no longer have.  One way of dealing with this 
shortcoming is to recover the lost complexity and 
then use it to address our most challenging problems.  
The report explains how this can be done.   

We begin by considering a new theory structure.  
Complexity theory, which focuses on the whole, 
comes with its own set rules, data, and procedures 
(Bolender, 2011).  Like any new theory in science, the 
rules come to us - one by one - from the data as we 
use them to test our new ideas and findings.  To get 
started, however, we have to satisfy a few prelimi-
nary requirements.  First, we need to identify the 
biology literature as a primary data source and then 

generalize the literature across papers, data types, 
and settings.  We can do this by defining the ele-
mental unit of complexity as a dimensionless ratio, 
one that carries information about the parts and their 
connections (Bolender, 2001-2011).  The final pre-
parative step involves change.  In complexity, change 
is detected by identifying alterations in patterns, not 
by just comparing the value of one part to another.  
Moreover, change behaves as a complexity that 
ripples throughout the biological hierarchy, often 
involving staggering numbers of parts and connec-
tions.  This wide-ranging connectivity provokes the 
overarching rule of complexity theory, which states 
that it takes a complexity to solve a complexity.  How 
does this rule help us?  If, for example, we use it to 
create a quantitative complexity, then we can reduce 
a biological problem to a mathematical problem.  This 
is exactly what the report does.  It treats diagnosis 
and disease as complexities and then proceeds to 
solve them.              

Although the task of applying complexity theory to 
biology may sound somewhat daunting, it is surpris-
ingly easy to do and understand.  To many it will 
seem a logical next step toward understanding those 
things that currently exist beyond the reach of 
reductionism, our current theory structure.    

Consider a simple example of how complexity theory 
works.  Going from reductionism to complexity is akin 
to going from chaos to order.  We can see this trans-
formation occur by plotting data taken from the 
Internet Brain Volume Database (IBVD).  Figure 1 
illustrates 61 estimates (control and experimental) 
for the volume of the amygdala, sorted according to 
size.  The chaos appears in the figure as a broad 
range in the individual values plus the expected 
separation produced by the data carrying different 
units (mm3 and cm3).  
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Figure 1. MRI estimates of volume for the human amyg-
dala.  When biological data become isolated, they no 
longer have their connections and become chaotic.              

If we add back the connections, by creating ratios 
between the parts of the amygdala, the original order 
begins to reappear (Figure 2). 

 

Figure 2.  Now the MRI data of Figure 1 - expressed as 
ratios - display order, as detected by a power regression 
with an R

2
=0.9994. 

Next, we calculate a triplet ratio (X:Y:Z) wherein X is 
set equal to one.  This allows us to express the Y, Z 
data as a repertoire equation (Figure 3). 

 

Figure 3. After forming the ratio X:Y:Z where X=1, Y (left) 
is plotted against Z (right).  The result is a linear equation 
with an R

2
=0.9995.   

Notice in Figure 3 that the range of the data has been 
compressed by orders of magnitude (compared to 
Figure 1) and that the two parts observe a strict 
linearity.  Now, most of the data differ by less than 
five percentage points.   

If Figure 1 represents chaos and Figure 3 order, then 
we want to be somewhere in between near the edge 
of chaos, the place where the most interesting things 
happen.  This final step consists of going from reper-
toire values (Figure 3) to decimal repertoire values 
(Figure 4).  A remarkable thing happens.  All the data 
shown in Figure 1 condense into a single ratio 
(0.4:0.5).  The point of this example is to show how 
complexity theory can optimize the effectiveness of 
our data.  Notice that reductionist data are noisy and 
difficult to explain (Figure 1), whereas the same data 
in a complexity setting (Figure 4) become wonderfully 
quiet and explain themselves as a generalization 
reflecting the underlying design principle of biology.       

 

Figure 4.  A single decimal repertoire value (ratio) for the 
amygdala (Y:Z) - left vs. right – summarizes the amygdala 
data across many different publications and diseases.  
Notice that all 61 data points are now represented by a 
single ratio (Y:Z = 0.4:0.5).  The mathematical marker - 
amygdala1amygdalaleft0.4amygdalaright0.5 – can be 
found in the MRI database. 

 

METHODS AND RESULTS 

The software package for 2012/2013 includes new 
software tools for assembling, analyzing, and inter-
preting mathematical markers based on MRI volume 
data (Keller and Roberts, 2009).  Special attention will 
be given to diagnosing disease within the framework 
of a preliminary theory structure based on complexi-



4 
 

ty.  The challenge for the reader will be to learn how 
to explore a complexity by creating, managing, and 
interpreting large data sets.  Patterns rather than 
individual data points become the focus of complexi-
ty wherein connectivity translates local changes to 
global consequences.        

  

Enterprise Biology Software Package 

The software package includes eight screens offering 
ready access to programs, databases, and documents 
(Figure 5).   

 

Figure 5.  Enterprise Biology Software Package – 2012/13. 

 

Generating Mathematical Markers 

Mathematical markers consist of a six character 
string that includes three named parts (A,B,C) and 
three numerical values (X:Y:Z) expressed as a ratio 
(AX:BY:CZ).  The method for generating these mark-
ers can be summarized briefly.  Beginning with a 
database of published MRI data (Internet Brain 
Volume Database (IBVD)) of the Human Brain Pro-
ject (Kennedy et al., 2012), the data set of a given 
paper is expanded by forming permutations to 
produce two sets of triplets: A,B,C and X:Y:Z.  In turn, 
the numerical ratio is converted into a decimal ratio 
and the alpha numeric components (A,B,C and X:Y:Z) 
are concatenated to form a mathematical marker 

(AX:BY:CZ).  Using this procedure, fewer than 2000 
individual data points were transformed into more 
than 700,000 markers.      

Next, we consider a step by step example.  Figure 6 
illustrates a collection of named parts (a, b, c) en-
tered into the permutations function of Mathemati-
ca (Wolfram Research, Inc.).  Figure 7 deals with the 
numerical values.   

 

Figure 6. Generating all possible combinations of three 
named parts, a, b, and c - taken three at a time.  In prac-
tice, the letters are replaced with the names of brain 
parts and corresponding ratios are concatenated thereto.   

In turn, the three columns of named parts are cop-
ied from Mathematica and pasted into the columns 
(X Name, Y Name, Z Name) of a spreadsheet tem-
plate (Figure 8); C:\EBS 2012\Files\TEMPLATE.   

The procedure is repeated for the numerical values 
(Figure 7).  The resulting three columns of numbers 
are copied from Mathematica and pasted into the 
three value columns of the template spreadsheet (X 
Value, Y Value, Z Value).  As soon as the data are 
entered, the ratio columns (X Ratio, Y Ratio, Z Ratio) 
are calculated automatically by the spreadsheet 
(Figure 8).   

 

Figure 7. All possible combinations of three numerical 
values (1, 2, 3) taken three at a time.   
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The final step of the procedure consists of express-
ing the ratio data as decimal ratios – using the num-
bering scheme identified in the blueprint software 
and supplied as a form: Documents > Forms > Work-
sheet – Connection Phenotype (Bolender, 2007-
2012).  Since the values in the X Ratio column are set 
equal to one by convention, values are needed for 
just the Y and Z decimal ratio columns.  First, the Y 
Ratio column is sorted low to high and then the Y 
Decimal column data are entered (according to the 
numbering scheme) and the completed column is 
copied to a worksheet adjacent to the main data 
table (Figure 8).  Next, the Z Ratio column of the 
template worksheet is sorted low to high and the Y 
column stored in the adjacent worksheet is copied 
and pasted into the Z Decimal Ratio column.  The 
mathematical markers appear automatically and 
data entry is complete, as shown in Figure 8.  Using 
the spreadsheet template and the procedure de-
scribed above, thousands of markers can be gener-
ated in just minutes.  See EBS 2012/Setup/Read.    

 

Figure 8. The spreadsheet template used to generate 
mathematical markers.  Enlarge as needed. 

 

Mathematical Marker Data Sets 

Starting with the IBVD database of MRI volumes 
(Kennedy et al., 2012), the data of 67 publications 
were converted into mathematical markers (normal 
and disease) and stored as spreadsheets and rela-
tional database tables (normal, disease, nor-
mal+disease, and diagnosis); see Table 1. 

Table 1.  Four MRI data sets (mathematical markers) are 
available as spreadsheets and relational database tables.  

Name Spreadsheet Database Table Markers 

Normal ● ●  295,404 

Disease ● ●  428,784 

Normal + Disease ● ●  724,188 

Diagnosis ● ●    61,204 

 

The first three data sets listed in Table 1 (normal, 
disease, normal+disease) group markers collected 
paper by paper.  The diagnosis data set contains the 
disease data minus the disease data that have dupli-
cates in the controls.  These false positives account 
for 367,580 markers, reducing the number of diag-
nostic markers to 61,204.   

When dealing with large and complex data sets, we 
clearly increase our options by moving these data 
back and forth between spreadsheets and the tables 
of a relational database.  This is accomplished as 
follows.  To move the markers from a spreadsheet 
into a relational database, save the spreadsheet as a 
tab delimited text file (e.g., diagnosis.txt), copy it to 
the root directory of the target computer (e.g., 
C:/diagnosis.txt), open the MRI view screen of the 
diagnosis database (e.g., Figure 9), and click on the 
import button.  To add data from a spreadsheet to 
the diagnosis database, number the new rows of the 
spreadsheet consecutively (beginning with 61,205), 
save it as a tab delimited text file in the root directo-
ry (C:/diagnosis.txt), and import it by clicking on the 
import button.  To save, click on the update button.  
To convert a database table into a spreadsheet, click 
on the save as button (Figure 9), name the file, and 
save it as an Excel file (*.xls).  Alternatively, a data-
base table can be saved as a text file (*.txt), which 
can be copied and pasted into an Excel worksheet.      

For these data transfers between spreadsheets and 
databases to work smoothly, we need several op-
tions for deleting rows of data from the database 
tables (Figure 9).  They include deleting all rows, all 
rows associated with a given citation, all rows having 
numbers greater than 61,204, and one row at a 
time.  Command buttons attached to the view data 
screen of the diagnosis table (Figure 9) run these 
operations automatically.    
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Figure 9. Mathematical markers of the diagnosis data set 
are shown in the view data screen of the MRI database.   

For convenience, a query by example (QBE) frontend 
is included with the database tables (Figure 10).  It 
allows us to run complex queries and to find specific 
information quickly – even with large data sets.     

 

Figure 10. The screen represents a QBE frontend to the 
diagnosis database.  It provides a user-friendly way to 
assemble complex SQL scripts automatically.  The results 
can be viewed directly as a scrolling table or sent to an 
Excel spreadsheet.  

 

Diagnosis Database 

A mathematical marker represents a basic unit of 
complexity, which in sufficiently large numbers 
allows us to capture the complexity of the human 
phenotype in remarkable detail.  To illustrate this 
point, we will use the markers to assemble and test 

a software-based approach to clinical diagnosis.  The 
key player is the diagnosis data set, which contains 
known markers for 24 different disorders of the 
brain.  The diagnostic method consists of generating 
mathematical markers for an unknown disorder, 
adding them to the diagnosis data set, marking exact 
matches (unknown marker = known marker), tallying 
the results, and making the diagnosis.  Although the 
diagnoses were originally done with spreadsheets, 
the results can be transferred to and viewed more 
conveniently with database tables (Figures 11 and 
12). 

 

 

Figure 11. Diagnosing an unknown disorder.  Top: The 
diagnostic procedure consists of mixing the markers of 24 
known disorders (blue) with markers coming from an 
unknown disorder (red) and checking off duplicates that 
occur between known and unknown markers.  Bottom:  
When all the duplicates have been identified, clicking on 
the analysis button gives the results.  The disorder with 
the largest number of hits becomes the diagnosis.  

At this point, it may be helpful to work through the 
main steps of generating the standards for the 
diagnostic procedure.  The process begins by select-
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ing a publication, identifying the data, and then 
using the data to generate collections of mathemati-
cal markers.  This provides two spreadsheet tables, 
one for normal patients (C) and the other for those 
with a diagnosed disorder (E).  Since the diagnosed 
patients carry both normal and abnormal markers, 
we need to isolate the collection of markers unique 
to disease.  This is accomplished by combining both 
types of markers (C+E) in the same Excel spread-
sheet, sorting on the markers column, and searching 
the list for duplicates.  Figure 10 illustrates the result 
of such a search.   

 

Figure 10. The spreadsheet table identifies duplicates 
between control (green) and experimental (white) rows.  
Such rows are deleted to avoid false positives when mak-
ing a diagnosis.    

By deleting all the duplicates, the remaining markers 
of a given paper are unique to the disease.  In effect, 
this operation removes the false positives at the 
local level, one paper at a time.  However, when all 
the markers from many papers are combined in a 
single spreadsheet (the diagnosis data set), an ab-
normal marker in the data set of one paper may 
have a normal counterpart in another.  By combining 
– in a single spreadsheet - the entire normal data set 
with the all the locally filtered abnormal markers, 
duplicates appearing at the global level can be iden-
tified and removed.     

This procedure produced the diagnosis database, 
which contains 61,204 mathematical markers unique 
to the 24 diseases contained therein.  Next, we can 
test the effectiveness of the database as a diagnostic 
tool by working through several representative 
examples. 

 

Example 1: Unknown Disease 

The first test consists of generating a collection of 
unknown mathematical markers using the data set 
of a published paper not found in the diagnosis 
database.  These unknown markers are highlighted 
in yellow, added to the diagnosis spreadsheet, and 
matched to known markers by identifying duplicates 
(Figure 11).  All 61 matches identifed the unknown 
disorder correctly as schizophrenia.  

 

Figure 11. The software-based diagnosis consists of 
matching known to unknown markers.  The results indi-
cate that all 61 matches identify schizophrenia correctly 
as the unknown disorder.  

Example 2: Unknown Disease 

Using a different paper as a data source, the proce-
dure described in Example 1 is repeated.  This time, 
however, the diagnosis identified seven different 
candidate diseases with bipolar receiving the largest 
number of matches (Figure 12).  Although reassur-
ing, because bipolar is the correct diagnosis, the 
results clearly show that the same mathematical 
marker can appear in different diseases.  Indeed, 
such an observation is more often the rule than the 
exception.  This alerts us to the possibility that the 
sample used for a diagnosis may influence the out-
come.  A relatively small number of parts, for exam-
ple, may not provide a sufficiently large number of 
unique markers to make the diagnosis correctly.  
Thus far, tests of unknown diseases represented by 
moderate to large data sets (>=15 parts) were not 
found to be subject to this limitation.  This is likely to 
become less of an issue as we begin to identify the 
optimal composition of data sets for diagnosis.      
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Figure 12.  Notice that one marker can apply to more 
than one disease.  For example, alzheimer, bipolar, and 
unknown all share the same mathematical marker 
(amygdalaright1putamen6putamenleft3) having the ratio 
1:6:3. 

Figure 13 summaries the results of Example 2. 

 

Figure 13. The figure identifies the disorders that share 
mathematical markers with the unknown disorder, which 
in this case is identified as bipolar.  The analysis indicated 
that bipolar disorder had 712 markers of which 401 
(56.3%) were uniquely bipolar.       

Figure 14 summarizes the data of Figure 13 with an 
equation, which can define a disease as a unique 
quantitative pattern. 

 

Figure 14. Disorders sharing mathematical markers with 
bipolar disease are plotted as an exponential.  In effect, 
this is the equation for the bipolar disorder based on 
mathematical markers and the current data set.   

Example 3: Alzheimer Disease 

Next, if we look at the mathematical markers of 
Alzheimer disease in the diagnosis data set, we see a 
pattern remarkably similar to the one shown in 
Figure 13.   The disease shares 878 of its 4392 mark-
ers with 12 other diseases, ranging from bipolar 
(606) to epilepsy (1) – see Figure 15.  This pattern of 
sharing mathematical markers with other diseases 
appears as a general feature of brain disorders and 
may help to explain the difficulty often encountered 
when making a diagnosis based largely on symp-
toms.        

 

Figure 15. Several diseases share the same mathematical 
markers with Alzheimer disease.  Of the 4392 markers for 
Alzheimer disease, 3514 (82%) are unique, whereas 606 
(11%) are shared with bipolar disorder, 121 (2%) with 
major depressive disorder, 115 (2%) with borderline per-
sonality disorder, and 58 (1%) with ADHD.  This pattern of 
sharing mathematical markers is typical of brain disor-
ders.        

Thus far, the examples demonstrate that complex 
disorders unfold into well-defined collections of 
basic building blocks (or modules) that can be de-
tected as mathematical markers.  This unfolding 
process is important because it provides insights into 
the rules of biological complexity.  If, for example, 
we reverse the process and begin with the modules, 
then we can readily assemble disorders that mimic 
those of biology.  We can do this because the un-
folding process reveals the recipe of a disorder as a 
specific construct of parts and connections (Figures 
13-15).  The principal insight into disease as a com-
plexity emerges as a general rule of design.  Parts 
and connections are arranged into modules (e.g., 
markers), which, in turn, are arranged into larger 
patterns that define a disorder.  This modular ap-

0
100
200
300
400
500

N
u

m
b

e
r 

o
f 

M
at

ch
e

s 

Example 2: Unknown 

y = 0.8621e0.5763x 
R² = 0.9738 

1

10

100

1000

0 5 10 15

N
u

m
b

e
r 

o
f 

M
at

ch
e

s 

1

10

100

1000

10000

N
u

m
b

er
 o

f 
M

ar
ke

rs
 

Alzheimer Disease 



9 
 

proach is an ingenious one on the part of the brain 
in that it can use many of the same parts and mod-
ules to create a wide range of different disorders.  
Moreover, it allows us to generalize disease as a 
global collection of markers, with local subsets 
expressing specific disorders.  The diagnosis data-
base performs both of these functions simultane-
ously.  Let’s look at an example.          

By unfolding the diagnosis database, we can see the 
relationships of parts to disorders (Figure 16).  No-
tice that a disorder is defined by its parts, that dif-
ferent disorders often share the same parts, and 
that a relatively small number of parts (35/185 or 
19%) accounts for much of the damage that occurs 
in the brain.     

 

Figure 16. Summary of brain parts involved in the disease 
process.  The data come from the diagnosis database. 
Enlarge as needed. 

Example 4: Autism 

Visualizing change in a complexity creates a chal-
lenge for the following reason.  When parts are 
connected, a local change in one or a few parts 
typically spreads throughout the complexity.  In 
effect, we need ways of observing changes that 

occur in very large numbers of parts – often 
numbering in the tens of thousands to millions. 

Recall that in calculating data ratios (X:Y:Z), X is 
set equal to 1.0.  This simplifies our task of detect-
ing patterns of change somewhat by only having 
to plot the two remaining variables (Y and Z).  By 
generating scatterplots (Y vs. Z), we can generate 
a movie consisting of two frames (normal and 
disease).  By flipping back and forth between the 
frames (i.e., two spreadsheets), changes in the 
ratios become immediately apparent (not illus-
trated, but examples can be generated using the 
marker data in the software package).  The mas-
sive change that occurs in a large data set is at 
first surprising and then somewhat frightening in 
that it shows how change actually operates in a 
complexity.      

Figure 17 attempts to illustrate a complex change 
by superimposing control (yellow) and experi-
mental (blue) data sets; overlapping data appear 
green.  Log-log plots, which spread out the ratio 
data, reveal a rich repertoire of patterns globally 
and locally.  In autism, the points move inward, 
outward, or stay the same.  

 

Figure 17. Key: Autism (blue), Normal (yellow), overlap 
(green).  Compared to the normal, autism is characterized 
largely by a contraction of the point set (inward move-
ment – yellow to blue).  However, examples of an outer 
movement and of no movement (complete green squares 
- overlap of blue and yellow) can be readily identified in 
an animation. 
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Complexity Theory – The Brain 

The fact that the same markers can be shared by 
different diseases – despite their six variable com-
plexities - prompts a closer look at the local and 
global patterns of disease in the brain.  Since pic-
tures often tell the story most effectively, we will 
use them here to explore the relationship of com-
plexity theory to the brain.   

Schizophrenia appears to be the most intrusive 
disorder of the brain in that it involves the largest 
number of parts and connections (Figure 18).  See 
also Bolender, 2011.   

 

Figure 18.  Schizophrenia involves at least 123 parts of 
the brain.  Enlarge as needed. 

By adding other diseases to the plot of Figure 18, we 
can see the relationship of parts to connections for 
14 different diseases of the diagnosis database 
(Figure 19).  Schizophrenia remains dominant with 
its 123 parts and connections, but notice that it 
shares many of its parts (30%) with the other 
diseases.  The wholly unexpected finding is that the 
parts and connections of 6 individually recognized 
diseases are identical to those of schizophrenia.  
What does this mean?  Is schizophrenia releasing 
diseases as spinoffs or is schizophrenia an aggrega-
tion of many different diseases? 

 

Figure 19.  Diseases of the brain share many similar parts 
and connections.  Enlarge the image to view details. 

There is more (Figure 20).  When we plot just three 
diseases (schizophrenia, bipolar disorder, and 
ADHD), the complex relationship of one disease to 
another becomes clear.  Bipolar disorder and ADHD 
together appear as a distinct subset of schizophrenia 
in that they share 80% of the same parts and con-
nections.  Moreover, bipolar disorder and ADHD 
appear related in that together they share roughly 
25% of the same parts and connections.   

 

Figure 20. ADHD and bipolar disorder share many identi-
cal parts and connections with schizophrenia, as well as 
with each other.  Enlarge as needed. 

This pattern of a close relationship between diseases 
(Figure 20) persists for many other combinations 
thereof.  Figure 21, for example, shows the relation-
ship between bipolar disorder and Alzheimer dis-
ease.  These two diseases share 9 out of 25 (36%) 
parts and connections.    
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Figure 21. Bipolar disorder and Alzheimer disease share 
similar parts and connections.  This graphic shows that 
they share a central module consisting of 9 parts.  

Perhaps the most interesting part of the story is that 
different disorders of the brain share not only parts 
and connections, but also identical mathematical 
markers.  In addition to capturing phenotypes, these 
markers begin to explain how normal and abnormal 
brains are constructed hierarchically as complexities 
based on well-defined relationships of parts to 
connections.  The pattern of connectivity begins 
with triplets (three connected parts) and continues 
as triplets combine to produce higher order com-
plexities (modules to disorders).  As we move 
throughout these hierarchical levels, complexity 
remains a function of the parts and connections, 
which we can fold or unfold to change their sizes, 
names, locations, properties, and mathematical 
markers.  The common thread that runs through 
everything is the universal connectivity of the parts. 

Starting with our working model for a general theory 
of biological complexity (Bolender, 2011), we can 
extend it to include a theory of disease specific to 
the human brain (Table 2).         

Table 2.  Complexity Theory of Disease (Human Brain). 

Working Theory of Disease (Human Brain) 1.0 
 

 Mathematical markers, which consist of three parts 
and three values expressed as a ratio, define a basic 
unit of order in biology. 

 The complexity of a disease can be captured with 
mathematical markers. 

 Mathematical markers – unique to disease – are con-
served in that the same markers can appear in dif-
ferent diseases. 

 A disease can display a modular structure, wherein 
the modules may include individual triplets (mathe-
matical markers) or collections of parts and connec-
tions largely defining other diseases. 

 

DISCUSSION 

The report offers examples of how technology helps 
us to operate comfortably within the realm of bio-
logical complexity.  In turn, this new found accom-
modation predicts a series of potentially disruptive 
events wherein rules, directions, and expectations 
can all change - perhaps sooner than we might 
imagine.  By reducing many types of biological data 
to common denominators (volume, surface, length, 
or number), creating dimensionless ratios, assem-
bling ratios into mathematical markers, and storing 
everything in a common database, we are well on 
our way to developing a mathematical clone of 
biology.  By reconnecting what was previously dis-
connected, we now get to play the complexity game 
– in earnest.   

 

Mathematical Markers 

Mathematical markers – in nearly inexhaustible 
supply – offer ready access to biological complexity.  
A disease displaying abnormal patterns can be ex-
pected to carry millions of such markers, occurring 
throughout the biological hierarchy.  Simply tap into 
a connectivity network and start asking questions.  If 
we know the rules, we can play the game.   By apply-
ing the same data format to all parts and all connec-
tions, mathematical markers effectively generalize 
and integrate data across all parts of an organism.  
This obeys a rule of complexity theory which states 
that all parts – large and small - are connected quali-
tatively and quantitatively.   

The welcoming nature of this new technology be-
comes obvious in that it does not discard our current 
technology based on reductionism, but rather it 
takes reductionism to a new and more informative 
level.  In the basic and clinical sciences, complexity 
cannot exist without reductionism because it per-
forms the critical task of producing the raw data 
needed to build and populate a complexity.         

But, do these mathematical markers actually exist in 
nature or are they simply the result of forming 
permutations?  Recall that biological parts were 
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used originally to generate data pairs and data pairs 
data triplets (Bolender, 2010, 2011).  Two data pairs 
can combine to form a triplet when two of the parts 
share identical names and decimal repertoire values.  
To demonstrate the existence of triplets, the data of 
67 publications (from the IBVD) were used to gener-
ate 37,950 data pairs of which 32,138 (84.7%) 
formed triplets.  In short, triplets actually exist.  The 
missing 15.3% may be attributed to parts in transi-
tion or to sample sizes with too few parts to detect 
triplets.  Notice that the plot of Figure 22 suggests 
that papers with larger data sets tend to produce a 
higher percentage of triplets.   

 

Figure 22. The range of data pairs forming triplets (per 
paper) extends from 8% to 99%.  

The data – in the form of mathematical markers - 
tell the story most convincingly.  Run the software 
and explore the markers databases.  Begin with the 
normal + disease data set (spreadsheet or database), 
sort the table on the mathematical markers column, 
and scroll through the rows.  Notice the remarkably 
long runs of duplicate markers revealing the prefer-
ences of biology in creating and conserving specific 
patterns of parts and connections.  Check the cita-
tion nu column to confirm that the duplicate mark-
ers come from several different papers. Compare 
the original published values (volumes) to the de-
rived ratios (dimensionless), noting the range of 
each.  One is broad (volumes) the other narrow 
(ratios). 

Mathematical markers quantify disease in terms of 
parts and connections, but to what advantage?  
Notice that figures 12, 13, 15, 19, 20, and 21 show 
different disorders displaying similar patterns, which 

can be explained - in part - by markers serving as 
interchangeable modules.  This raises an interesting 
question.  If, as these figures suggest, we can unfold 
the complexity of a disease, can we also unfold the 
complexity of its prevention and treatment?  Such 
questions quickly snap into view, particularly if we 
take a hard look at disease as a complexity.  Instead 
of studying hundreds of different brain disorders 
one by one, why not - since they have so much in 
common - study them all together as a single group?  
Might common etiologies lead to common treat-
ments?  The results given in Figures 16 and 19, for 
example, would seem to offer a compelling argu-
ment in favor of a global approach to understanding 
and treating disease.   

 

Diagnosis 

We are often reminded that the best and most 
effective approach to managing disease is preven-
tion, which typically requires early detection and 
life-style changes. The MRI database suggests that a 
diagnosis based on mathematical markers can pro-
vide not only the starting (normal) and end points 
(disease), but also points in between. These inter-
mediate points could be highly effective in alerting 
us to a threatening condition at a time when inter-
vention might be most helpful.  In effect, we can use 
this new technology to create a feedback loop that 
keeps us informed of our fitness over time.       

Consider, if you will, a future scenario based on 
mathematical markers.  At the completion of a MRI 
head scan, we would read our diagnosis and view a 
list of options and recommendations.  In this case, 
we elected the scan not to identify the presence of a 
disorder, but rather to evaluate our overall health 
and to consider ways of avoiding potential problems.  
To become an alternative – or adjunct - to the tradi-
tional physical exam, a MRI head scan would have to 
detect changes in the brain produced by conditions 
existing throughout the body.  Indeed, this may be 
entirely possible.  Recent MRI studies report that 
diseases in the periphery can in fact induce changes 
in the brain (Clarence et al., 1999, Pérez-Dueñas et 
al., 2006, Borson et al., 2008, Nagai et al., 2010, 
Agostini et al., 2012).  Perhaps, a diagnosis database 
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populated with billions - or trillions - of mathemati-
cal markers will define a new and enormously pow-
erful health care tool, one that operates effectively 
at the level of our individual phenotypes.        

Developing new technologies for diagnosing disease 
is becoming a high priority item as evidenced by the 
announcement of a recent X Prize (Qualcomm Tri-
corder X Prize).  The sponsors want a handheld 
device that can diagnose disease in an individual 
automatically – basically a gadget equivalent to the 
medical tricorder of Star Trek fame.  The stated 
purpose of the initiative is to inject new and disrup-
tive technologies into the health care system.  The 
prize will be awarded to the team that can identify 
correctly a relatively modest number of disorders 
(15) – none of which occur in the brain.  The most 
interesting read in the guidelines document (a .pdf 
document) is that they reveal the names of the 15 
diseases that will be on the final test.  This appears a 
curious strategy in that they are asking for a suite of 
biological markers operating in a reductionist setting 
even though complexity is most likely to be the 
principal disrupting agent going forward.  Moreover, 
supplying the answers to the test exposes the out-
come of the contest to a worst case scenario.  Allow 
me to explain.   

If individual biological markers overlap diseases in 
ways similar to those seen for mathematical markers 
in the brain (e.g., Figures 13 and 15) or if the biologi-
cal markers maintain their track record of being 
consistently unreliable (Ioannidis and Panagiotou, 
2011), then one marker per disease is not likely to 
be enough to get the job done.  Moreover, the 
teams must deal with the thorny problems of false 
positives and ambiguous concentrations (Bolender, 
2001-2011).  Given the obvious pitfalls of a reduc-
tionist approach, why not simply solve the X Prize as 
a complexity?      

How might this be accomplished?  We would start 
with the data.  Question: What are the five most 
readily available sources of patient data?  Blood, 
sweat, tears, saliva, and urine would all seem to 
qualify.  If each of these fluids can supply 20 detect-
able parts (e.g., ions, molecules, cells) then we get 
34,200 mathematical markers for each of the 15 
specified diseases of the X Prize with a total of 

513,000.  Chips (e.g., Lab-on-a-chip, IBM Research) 
and standard laboratory devices can be used to 
assay the fluids, a handheld computer to generate 
the markers, and a Wi-Fi connection to send the 
markers to the cloud for matching the unknowns 
(patients with one of 15 possible diseases) to the 
513,000 standards described above.  Now consider 
the final exam of the X Prize.  If one team has 15 
markers and the other 513,000, the odds of com-
plexity winning would be roughly 34,200 to 1.   

              

 Unified Theory of Diagnosis 

The usual incentive for proposing a unified theory is 
to suggest that a single solution applies to a consid-
erable number of different problems.  In disease, 
where parts and connections undergo changes, 
diagnosis depends on detecting these events either 
directly as markers or indirectly as symptoms.  Since 
we now know that we can use markers to diagnose 
disorders of the brain (Examples 1 to 4) and that 
triplets occur throughout the organism (Bolender, 
2011), mathematical markers become a candidate 
solution.  A unified theory allows us to generalize 
diagnosis at the level of the organism (Table 2). 

Table 2. The unified theory of diagnosis proposes a single 
data model – based on triplets - for all diseases. 

Unified Theory of Clinical Diagnosis 1.0 
 

The theory proposes that: 

 Data sources can include the basic and clinical sciences and 
all other sources of data. 

 Triplets, consisting of three biological parts, can be derived 
from volume, surface, length and number data by forming 
all possible combinations.  

 Mathematical markers can be formed by concatenating the 
parts and connections (ratios) of triplets. 

 A single database table can include mathematical markers 
coming from all parts and all diseases. 

 A disease can be diagnosed by running its markers against 
known standards (identified markers) in the diagnosis da-
tabase. 

 Specific risk factors related to life-style, employment, drugs, 
treatment protocols, et cetera can be assigned to individu-
als based on their phenotypes – as defined with mathemat-
ical markers. 

 Mathematical markers can create a complex data set well-
suited to preventative, diagnostic, and predictive goals.  As 
such they suggest a general solution to the problem of dis-
ease as a complexity. 
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The unified theory of diagnosis hypothesizes that 
mathematical markers can diagnose all diseases 
provided that sampling is unbiased, that parts can 
be identified and estimated accurately, that changes 
in parts and connections occur, and that parts are 
available in sufficiently large numbers.  To test the 
theory, we can populate the current diagnosis data-
base with data coming from all the other parts of the 
body and then run the markers of unknown diseases 
against the known standards.  Generalizing diagno-
sis, of course, moves us one step closer toward 
generalizing disease.        

 

Disease 

The power of science derives from its ability to 
generalize large and complex bodies of information.  
In turn, generalizations drive progress by being 
translated into new theory structure the purpose of 
which is to encourage new levels of understanding.   

What happens when we apply this formula to hu-
man disease?  We quickly gain a radically different 
perspective.  By unfolding diseases into their com-
ponent parts and then refolding the parts into 
mathematical markers, it becomes apparent that all 
the diseases considered thus far conform to the 
same design strategy – a stoichiometric arrange-
ment of parts and connections (Bolender, 2001-11).  
Such a finding should not come as a surprise in that 
an orderly arrangement of parts is a design principle 
fundamental to biology, chemistry, and physics.  

But why does the brain display such a broad range of 
disorders based on a similar underlying design?  
What is the advantage?  Are we simply looking at 
the consequences of damage and unfortunate mis-
takes, or are these disorders somehow related to 
the behavior of an complex adaptive system?  We 
know, for example, that a prime direction of living 
systems is to evolve into new and more successful 
configurations.  This is achieved by reshuffling old or 
introducing new parts and connections, enabling 
new properties to emerge.   

How do disorders of the brain fit into this overarch-
ing picture of change?  Although we normally asso-

ciate brain disorders with negative outcomes, disor-
ders creating geniuses, creative artists, and savants 
are among the most dazzling examples of an inno-
vating brain.  Might some or several brain disorders 
simply be the result of the brain trying to evolve and 
become more successful?  The question need not 
remain an academic one because the mathematical 
markers of geniuses, for example, can be assembled 
from MRI head scans and run against the markers of 
the current disease database.  An interesting result 
might encourage a young and adventurous scientist 
to follow a parade of markers all the way back to the 
genome.  By keeping everything well-connected, 
complexity theory actively encourages such activity.                 

 

Concluding Comments 

The report accomplishes two things.  It introduces 
the reader to the application of complexity theory in 
biology and provides a support structure for the 
theory in the form of a software package.  Complexi-
ty is rapidly becoming a new frontier in biology 
because it represents a primary source of new in-
formation that can drive discovery, innovation, and 
productivity very effectively.  This new direction 
signals a maturity in our understanding in that we 
now know that it takes a complexity to solve a com-
plexity.       

With all the major parts in place, all we need are the 
right catalysts to activate the complexity machine.  
By sheer chance, I discovered the Internet Brain 
Volume Database sitting in a collection of largely 
molecular biology databases.  As a result, we now 
have almost a million mathematical markers, a 
general method for diagnosing disease, working 
theories for complexity, diagnosis, and disease, and 
even an ad hoc solution to a coveted X Prize.  For 
me, this database became the catalyst that turned 
otherwise fanciful ideas into reality by providing 
ready access to published data.  Since most biomed-
ical publications continue to exist behind paywalls, 
this was an extraordinary find.  Just imagine how 
much more exciting and productive science would 
become if we had open access to published data and 
could browse them freely in databases.     
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APPENDIX 

 Figure 18.  Schizophrenia involves at least 123 parts of the brain.  Enlarge as needed.  
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Figure 19.  Diseases of the brain share many similar parts and connections.  Enlarge the image to view details. 

  



18 
 

 

Figure 20. ADHD and bipolar disorder share many identical parts and connections with schizophrenia, as well as with each 
other.  Enlarge as needed. 

 

 

 


