
1 
 

In: Enterprise Biology Software, Version 14.0 © 2014 Robert P. Bolender 

Enterprise Biology Software:  XV. Research (2014) 

ROBERT P. BOLENDER 

Enterprise Biology Software Project, P. O. Box 292, Medina, WA  98039-0292, USA 

http://enterprisebiology.com 

 
SUMMARY 
 
Clinical diagnosis follows largely a subjective approach wherein signs and symptoms play a major role in 
identifying a disease.  In disorders of the brain, however, these signs and symptoms often overlap and 
diagnosis can become a daunting task.  Since complexity theory allows us to capture the rules and algo-
rithms the brain uses to define itself in health and disease, it should be possible to assemble an objec-
tive model for diagnosis.  The advantage of a data-driven approach is that we can design it as a complex-
ity parallel to that of biology, one that encapsulates both the diagnostic skills and published data of ex-
perts.  Using MRI data coming from thousands of patients reported in 117 papers (Internet Brain Vol-
ume Database (IBVD): Kennedy et al., 2012), we will figure out how to diagnose 27 different disorders of 
the brain correctly 100% of the time.  In turn, this objective approach to diagnosis will trigger several 
unexpected outcomes - the genesis of a new gold standard, a shift from small data to big, and a better 
understanding of how to solve complex problems with large data sets.  To make our move into big data, 
we will combine the properties of a spreadsheet with those of two database platforms, upgrade to a 64-
bit operating system, and assemble algorithms (Appendix II).  A proposed solution to the diagnosis prob-
lem will emerge from a series of tests applied to databases containing triplet (AX:BY:CZ) and quadruplet 
(AX:BY:CZ:DQ) markers.  These tests will guide our solution to a complex problem by identifying data-
base filters one after another, as we gather clues along the way.  The results will show that this ap-
proach to problem solving offers not only a general solution to the problem of clinical diagnosis, but it 
also provides algorithms and new strategies for automation.  In effect, by demonstrating an ability to 
diagnose phenotypes objectively, we now have the where with all to figure out - at any given point in 
time - what we are, were, or will be.  We can do this because mathematical markers allow us to general-
ize biological data sets, which contain vast stores of diagnostic and predictive information.  The current 
software package includes new and updated databases along with instructions for their use. 
 
 
 

INTRODUCTION 
 

A central challenge in transitioning from a descrip-
tive to an evidence-based health care system in-
cludes the introduction of new technologies and 
theory structures that can deliver phenotypes with 
diagnostic and predictive properties.  To this end, 
recent reports of the Enterprise Biology Software 

Project have described methods for translating pub-
lished data into mathematical markers that can cap-
ture the complexity of phenotypes as quantitative 
patterns, which, in turn, can generalize both locally 
and globally (Bolender, 2011-2013).  Such an ap-
proach seeks to identify an enterprise biology capa-
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ble of operating seamlessly across all the basic and 
clinical sciences. 
 
Our task in this report will be to explore the proper-
ties of mathematical markers as a diagnostic tool.  
To this end, we will use data from the Internet Brain 
Volume Database (IBVD) (Kennedy et al., 2012) to 
generate markers for known disorders of the human 
brain and then figure out how to use them to identi-
fy unknown disorders.     
 
Since we know that the specificity of a mathematical 
marker increases in proportion to the number of 
variables therein, we will increase our level of play 
by making the transition from triplets (AX:BY:CZ), to 
quadruplets (AX:BY:CZ:DQ).  This upgrade, however, 
requires a technological shift from small to big data, 
which introduces a new set of problems.  Increased 
memory requirements compel us to move from a 32-
bit to a 64-bit computing platform and to introduce a 
new suite of software tools.  Moreover, we have to 
learn how to work with database tables containing 
rows of data numbering in the millions and to auto-
mate many of the diagnostic procedures previously 
done manually.   
 
This is what to expect.  At first, most of the diagnos-
tic tests with quadruplet and triplet markers will fail 
because disorders of the brain share many of the 
same markers and, as a result, the markers of one 
disorder influence the diagnosis of another.  Moreo-
ver, an unknown marker may or may not have a 
counterpart (duplicate) in the known group.  These 
observations suggest that we need to pursue a strat-
egy based on unique markers that can be shown to 
work flawlessly within a well-defined data space – 
the Internet Brain Volume Database.  In effect, our 
goal becomes a software product with algorithms 
that can deliver the correct diagnosis 100% of the 
time.     
 
Why set the bar at 100%?  When biology triggers an 
algorithm to produce a specific disorder, it reconfig-
ures it parts and connections according to a new set 
of instructions.  Consequently, each disorder displays 
mathematical markers – and collections thereof – 
unique to the disorder.  We can tap directly into the 
algorithm defining a given disorder by selecting only 

those markers that deliver the correct diagnosis 
100% of the time.  There is an additional benefit to 
this approach.  We can argue that by applying this 
procedure to individual patients and to populations 
thereof, we can approach a general solution to the 
problem of diagnosis in clinical medicine.  In turn, 
this general solution becomes universal in that it ap-
plies not only to MRI data, but also to all the data 
types that can form mathematical markers.  This 
creates a world of possibility.  A universal data set 
serves not only as a diagnostic tool but also becomes 
the foundation of a predictive vehicle capable of 
moving forward and backward in time.  Such mobili-
ty may become especially helpful as we begin to 
search for the many and elusive connections that 
exist between phenotypes and genotypes.         
 
As the methods and results section will show, finding 
markers that work at the 100% level requires exten-
sive data processing with two 64-bit programs – Mi-
crosoft Excel and Access.  Reconciling large data sets 
with these two interacting programs offers a host of 
new challenges for the reader that may become 
somewhat less intimidating by working through the 
examples given in Appendix II.  Since big data are 
fundamental to complexity theory, learning how to 
diagnosis an unknown disorder with a data-driven 
approach offers the reader a demanding but reward-
ing experience.   
 
A key question, however, remains unanswered.  Will 
mathematical markers allow us to diagnose disor-
ders of the brain – one patient at a time?  The an-
swer of course can only come from the authors with 
access to the original patient data in the IBVD.   
 
 

METHODS AND RESULTS 
 
The software package for 2014/2015 includes new 
databases and software tools for diagnosing disor-
ders of the brain – using mathematical markers de-
rived from published data.  In addition, templates 
and worked examples will help to ease the transition 
from small to big data.    
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Enterprise Biology Software Package 
 
The software includes eight screens offering ready 
access to programs, databases, and documents (Fig-
ure 1).   
 

 
Figure 1. Enterprise Biology Software Package – 2014/15.  The 4GB 
package contains 354 files stored in 9 folders. 
 
 

The Game Plan 
 
The report explores new strategies for diagnosing 
disorders of the brain using big data.  They include 
increasing the specificity of mathematical markers 
by increasing the number of variables in play, identi-
fying software synergies, and demonstrating the ef-
fectiveness of mathematical markers in solving diffi-
cult problems.  In all cases, the IBVD will serve as our 
primary source of data (Figure 2).    
 

 
Figure 2.  Using clinical data from the Internet Brain Volume 
Database (IBVD) of Kennedy et al., 2012, we will assemble 
mathematical markers and use them to diagnose disorders of 
the brain objectively.  A diagnosis, which consists of comparing 
unknown markers to known standards, will use markers based 
on 8 (quadruplets) and 6 (triplets) variables.  Tests 1 and 2 
compare unknown markers to known markers (shared), 
whereas tests 3 to 7 compare unknown markers to known 
markers (unique).  The tests will help us to design databases 
capable of diagnosing disorders of the brain – in a well-defined 
data set (IBVD) - with an accuracy of 100%.  Such an outcome 
requires an approach consistent with the big data requirement 
of complexity theory.  Note that running these tests required 
operations involving more than 15,000,000 mathematical 
markers. 

 

Mathematical Markers 
 
A mathematical marker includes parts (names) and 
connections (ratios) arranged as an alphanumeric 
string.  It serves as a fundamental unit of biological 
complexity, according to the definitions developed 
for complexity theory (Bolender, 2012-2013; Appen-
dix III).  Moreover, each marker encapsulates the 
expertise of the physicians who collected the data 
and made the diagnosis.  Although it may take but a 
few markers to identify an unknown disorder cor-
rectly, its characterization by thousands or millions 
of markers reveals its wide reaching effects.          
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Recall that mathematical markers increase the 
amount of information in a publication by permutat-
ing an original data set (Bolender, 2001-2013).  By 
forming all possible data ratios, we maximize the 
likelihood of detecting differences between normal 
and abnormal data sets.  As shown in Figure 3, form-
ing mathematical markers quickly turns little num-
bers into big ones.   
 

 
Figure 3. Original data sets increase the amount of information 
they contain by forming permutations.  When expressed as 
mathematical markers these permutations define phenotypes 
both qualitatively (alpha string) and quantitatively (numeric 
string).  Notice, for example, that the same 20 parts can pro-
duce 380 data pairs, 6,840 triplets, 116,280 quadruplets, and 
1,860,480 quintuplets.  Each data set represents the phenotype 
as a set of patterns with a different degree of specificity.            

Our immediate task will be to extract information 
from a large clinical data set (IBVD) with the goal of 
replicating the clinical diagnoses of the original stud-
ies.  By connecting the expertise of the physician in 
diagnosing a disorder with its phenotypic expression, 
we can begin to explore the properties of a data-
driven approach to diagnostics in clinical medicine.  
Notice the deliberate shift in strategy.  Instead of 
dispersing this expertise across largely inaccessible 
journals, the IVDB allows us to concentrate it with 
algorithms designed to solve a real-world problem.  
Specifically, we want to diagnose disorders of the 
brain by analyzing volume data derived from MRI 
head scans.       

Quadruplet Markers 

 
A quadruplet marker includes four named parts (A, 
B, C, D) each with an accompanying numerical value 
(X, Y, Z, Q).  This defines the relationship of one part 
to another as a mathematical ratio (AX:BY:CZ:DQ).  
By dividing each numerical value by the value of X, X 
becomes equal to one (1:Y:Z:Q).     
 
In moving from triplets to quadruplets, however, we 
move from small data to big.  As shown in Figure 3, 
quadruplets quickly exceed the limits imposed by 32-
bit Excel spreadsheets (2 GB of memory and 
1,048,576 rows of data).  Since working with math-
ematical markers includes shuttling data back and 
forth between spreadsheets and databases, a 32-bit 
technology allows us to operate comfortably with 
triplets, but not with quadruplets.   
 
Moreover, working with quadruplet markers intro-
duces a new set of problems.  Recall that diagnosis - 
as practiced with mathematical markers - depends 
on matching unknown markers to known standards 
and tallying the results (Bolender, 2011-2013).  This 
is done by adding an unknown set of markers to a 
table of known markers in a diagnosis database, 
sorting the markers alphabetically, and then scan-
ning down the table and marking each duplicate 
marker (unknown=known standard) as it appears.  
Alternatively, we can transfer the database table to 
an Excel spreadsheet and identify the duplicates au-
tomatically using the conditional formatting option.  
In practice, however, sorting a large data set auto-
matically can take hours.   
 
These technology related problems quickly disap-
peared by shifting to a 64-bit platform and running 
Excel and Access together as a team.  Appendix II 
includes worked examples to show how this was ac-
complished.  
 

Diagnostic Tests  
 
A diagnostic test depends on identifying a set of 
properties unique to a given disorder.  Mathematical 
markers allow us to detect such properties in indi-
vidual markers and in combinations thereof.  Alt-
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hough increasing the number of variables in a mark-
er increases its power to distinguish one disorder 
from another, the cost of adding variables increases 
the workload exponentially (Figure 3).       
 
A diagnosis begins with an original set of mathemat-
ical markers that requires filtering.  Some of the 
markers are unique (occur one or more times in one 
setting), whereas others are shared (occur one or 
more times in multiple settings).  Since each catego-
ry alone or in combination can produce a different 
outcome, each test shows us how a given outcome 
depends on our selection of filters.  By applying a 
battery of tests, each result supplies clues, which, 
when taken together, guide us toward a solution.  
The filtering process becomes somewhat easier to 
follow by summarizing each test visually with an al-
gorithm.      
 
 

Test 1: Quadruplets (Shared Markers)     
 
The first test posed the following question.  By up-
grading the markers from triplets to quadruplets, 
will this improve the ability of the database to diag-
nose unknown disorders?         
 
Making Known Markers: We begin with the volume 
data of a given paper in the IBVD and use the names 
thereof to generate quadruplets - using the permu-
tation function in Mathematica.  Next, we import 
this list of quadruplets into an Excel worksheet as a 
text file (tab delimited) and use a template work-
sheet (Template_Quads.xlsx) to associate each part 
(name) with its numerical value (volume).  After cal-
culating ratios, we assign the decimal repertoire val-
ues as defined in the documents section of the soft-
ware package (Forms: Worksheet - Connection Phe-
notype).  The template worksheet performs all the 
concatenations and calculations automatically, 
thereby producing a table of quadruplet markers.  
This procedure is applied separately to control and 
experimental data sets – paper by paper.  See Ap-
pendix II for a worked example.   
 
Test 1 used the following algorithm. 
 


Algorithm 1. Test 1. 

 
The filters removed duplicate markers from the 
same paper (control marker = experimental marker) 
and from the database (experimental marker = ex-
perimental marker) so that a given marker could ap-
pear only once for a given disorder (Algorithm 1).  
This defined a diagnosis database for quadruplet 
markers, which was stored as a text file (Test1.txt).     
 
Making Unknown Markers: To test the effectiveness 
of this diagnosis database, unknowns were prepared 
– one paper at a time - using the template men-
tioned above (Unknown-Test1.txt).  Since these data 
came from patients that carry both normal and ab-
normal markers, a false positive will occur whenever 
a normal marker in the unknown corresponds to an 
abnormal marker in the diagnosis database (control 
(unknown) = experimental (known)).  Although this 
uncertainty may always exist, it can be minimized 
(see Test 7).         
 
Diagnosing Unknown Markers: The diagnostic pro-
cedure consisted of importing the database text file 
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(test1.txt) into an Access database, appending a text 
file containing the markers of a test paper (un-
known), looking for matches (unknown = known), 
and tallying the results.  The diagnosis went to the 
disorder with the largest number of identified un-
knowns.  Obviously, the problem with this approach 
is that it is subject to a sampling bias.  Since the 
same marker can appear in different disorders, the 
markers of one disorder can overwhelm those of 
another.  In turn, this can lead to an incorrect diag-
nosis.  The point of test 1 was to see if the quadru-
plet markers with their increased specificity could 
overcome the risk of this potential sampling bias. 
 
Results: The MRI papers from the IBVD supplied 
about 12,000,000 quadruplet markers for the control 
and experimental data sets.  Eliminating duplicates 
(control = experimental) at the level of individual 
papers reduced this number to 4,796,416, and finally 
to 589,945 after deleting duplicates (experimental = 
experimental for a given disorder).  This produced a 
diagnosis database for the known quadruplet mark-
ers.  Note that the filters assured that a given math-
ematical marker could occur only once for a given 
disorder, but that the same maker could occur in 
different disorders (Algorithm 1).   
 
Since a quadruplet marker contains four parts 
(names) with four connections (ratios), the extent to 
which they were shared across such a wide range of 
disorders was quite unexpected.  Figure 4, for exam-
ple, shows that the quadruplet database contained 
2,538 markers for ADHD (red), but that ADHD shared 
its markers with at least 12 other disorders (blue).  
Appendix I includes similar histograms for 21 differ-
ent disorders.      
 

 

Figure 4. The diagnostic database contains 2,538 quadruplet 
markers for ADHD of which 1,434 also occurred in schizophre-
nia, 468 in Alzheimer, etc. 

Figure 5 gives the frequency distribution of the 
quadruplet markers – by disorder -   for the database 
used in Test 1.  Notice that the markers range in 
number from 24 to 245,621 and that schizophrenia 
and bipolar disorder account for 96% of the markers.       
 


Figure 5. The histogram illustrates the frequency distribution of 
quadruplet markers in the diagnosis database across 21 disor-
ders of the brain.  Notice that most of the markers belong to 
schizophrenia and bipolar disorder. 

 
To test the effectiveness of this first database as a 
diagnostic tool, data from thirteen IBVD papers were 
translated into quadruplet markers (unknowns) and 
run – one by one - against the knowns of the diagno-
sis database summarized in Figure 5.  The results 
appear in Table 1. 
 
Table 1. The table includes the results of running the data of 13 
unknowns (publications) – one at a time - against a collection 
of known standards, both of which came from the IBVD.  A 
result can be correct (YES), incorrect (NO), tied (TIE), or nonex-
istent (variables not in play).  In spite of the more than 500,000 
known markers being in play, the diagnosis was correct only 
about 50% of the time.  Clearly, the correct diagnosis was fre-
quently being overwhelmed by the data of other disorders 
(308, 329, 472. 587, 621, and 623).  In two cases (308 and 472), 
the disorder being diagnosed failed to show even a single 
marker – the unknown variables were not in play.  Notice that 
5 of the 7 correct diagnoses came from the two disorders with 
the largest number of markers - schizophrenia (4) and bipolar 
(1). 
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In test 1, the diagnosis was correct only 54% of the 
time (Table 1).  The results, however, indicated that 
several disorders masked the correct diagnosis (ve-
locardiofacial, panic disorder, Down syndrome, and 
Alzheimer), but not schizophrenia.  Although the in-
creased specificity of the quadruplet markers played 
a role (e.g., no masking by schizophrenia), the num-
ber of parts not in play seemed to be a major limit-
ing factor.  In effect, the test (knowns vs. unknowns)  
was comparing incompatible samples.  If this is the 
case, increasing the amount and mix of data in the 
diagnosis database (knowns) might produce a better 
result.  Test 2 was designed to test this possibility.  
 

 
Test 2: Triplets (Shared Markers)     
 
Test 2 consisted of downsizing the quadruplet mark-
ers of test 1 to triplets (AX:BY:CZ) and increasing  the 
number of IBVD papers contributing markers to both 
the known and unknown data sets (Algorithm 2).  
Notice in Table 2, however, that test 2 failed at 
about the same level as test 1 - the diagnosis was 
correct only 57% of the time.  Moreover, the triplet 
markers displayed a substantial loss of specificity, as 
shown by the strong masking effect by schizophre-
nia.  If we remove this masking effect, the success of 
the test jumps to 86%.   

 
Taken together, the results of tests 1 and 2 tell us 
that a database containing shared markers shows 

little promise as a diagnostic tool.  Accordingly, test 
3 used only unique markers.   

Table 2. The diagnosis database of Test 2 included the same 
collection of parts used in Test 1, but this time they were used 
to generate triplet markers.  The table shows a strong masking 
effect by schizophrenia, which led to a diagnostic score of only 
57%.  When the offending schizophrenia data were removed 
from the analysis, the score increased to 86%.   

 

 

Algorithm 2. Test 2. 
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Test 3: Triplets (Unique Markers)     
 
Recall that schizophrenia has two types of markers, 
those that it shares with other disorders and those 
unique to schizophrenia.  When we select only the 
unique markers (the ones that occur only once) from 
the diagnosis database of triplets described in Test 2, 
we find 83,305 for schizophrenia, 2 for Alzheimer, 2 
for bipolar, and 1 for major disruptive disorder (Al-
gorithm 3).  If, in turn, we run several unknowns 
against this new set of unique markers (knowns), the 
effectiveness of the diagnostic method jumps to 
100% (Table 3).          
 
Table 3. When the unknown markers were run against the 
database of markers unique to schizophrenia, each unknown 
was diagnosed correctly.   

 

 

Algorithm 3. Test 3. 

Test 4: Quadruplets (Unique Markers)     
In Test 4, we return to the quadruplets and select 
only the unique markers - those that appear only 
once in the database (Algorithm 4).  When several 
unknowns were run against the unique knowns of 
this database, the promising results seen in Table 3 
failed to appear.  Table 4 shows that the database of 
unique markers had a success rate of only 8%.  
Moreover, the markers of four papers (308, 587, 
621, and 657) were not even in play.  Although the 
markers were unique in the quadruplet database of 
knowns, they were not unique in the unknowns be-
cause the same marker occurred in more than one 
disorder.  In effect, the unknowns were sharing simi-
lar markers.   
 
Normally, such a result would signal failure and bring 
the testing to an abrupt close.  Complexity theory, 
however, changes the rules.  It assures us that every 
problem in biology has a solution provided we set it 
up correctly.  We simply need to rethink our ap-
proach.          
 
Table 4.  The database of unique quadruplet markers was not 
effective as a diagnostic tool because it was sharing its unique 
markers with more than one of the unknown disorders.  In 
effect, the known markers were unique to the knowns but not 
to the unknowns.    
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Algorithm 4. Test 4. 

 
What do we know so far?  We know that a diagnosis 
succeeds when the all the markers (known and un-
known) are unique (Table 3), but fails when one or 
both of the markers  are shared (Tables 1, 2, and 4).  
Tests 1 and 2 failed because they used just shared 
markers.  Test 3 succeeded because both the known 
and unknown markers were unique.  Test 4 failed 
because one set of markers was unique (knowns), 
but the other set was shared (unknowns).   
 
These results tell us what to do.  We need to apply a 
set of filters that prevent or minimize sharing within 
- but not between - the known and unknown mark-
ers.  In effect, we can diagnose a disorder of the 
brain by matching unknown to known markers, pro-
vided such markers are unique to the individual 
known and unknown data sets.  In Test 5, we take 
the next step by applying a set of filters that im-
proved the success of the diagnosis from 8% (Table 
4) to 80% (Table 5).   
 
 
 

Test 5: Quadruplets (Unique Markers)     
 
Test 4 used one unique filter, whereas Test 5 used 
two (Algorithm 5).  The first filter of Test 5 selected 
for unique markers, whereas the second filter se-
lected for markers unique to a given disorder – pa-
per by paper.  The resulting markers served as the 
knowns in the diagnosis database used for Test 5.  
Table 5 indicates that this filtering algorithm leads to 
a better outcome, given the score of 80%.  Notice 
that three of the unknowns (472, 587, and 657) were 
out of play (OOP) in that Filter 3 found no duplicates.  
Moreover, the unknown markers of papers 308 and 
621 led to the incorrect diagnosis of epilepsy and 
that the correct diagnosis was out of play, as indicat-
ed by the absence of duplicates (0).  This tells us that 
we may have reduced, but not eliminated the sam-
pling and data compatibility issues.   


Table 5. By increasing the uniqueness of the markers, we in-
crease their ability to diagnose disorders correctly.  Removing 
papers that are out of play (OOP) improved the results. 
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Algorithm 5. Test 5. 

 

Test 6: Quadruplets (Unique Markers)     
 
To get to a diagnostic score of 100%, we must deal 
with the issues of sampling and compatibility.  Such 
issues can be eliminated by moving to a closed sys-
tem wherein all the markers are unique and each 
marker can assume the role of either a known or 
unknown.  We create a closed system by including 
only those markers coming from the IBVD.  In effect, 
we identify two worlds, one filled with knowns (MRI 
data stored in the IBVD) and the other with un-
knowns (MRI data not stored in the IBVD).  One 
world exists as a certainty (100%), the other as an 
uncertainty (?%).       
 
When a marker from the unknown world enters the 
known world, we can predict its diagnosis with a giv-
en probability – that can be determined empirically.  
The preliminary results of Test 3, however, suggest 

that this prediction can be correct – at least in this 
one example – 100% of the time.     
 
Diagnosis Database (Quadruplets):  Since the results 
of the tests indicated that only unique mathematical 
markers could give the correct results 100% of the 
time, the diagnosis database for quadruplets 
(MRI_Q_DIAG_100) now contains just such markers 
(Algorithm 6).  Table 6 summarizes the composition 
of the database, which includes data from 75 papers 
and 3.6 million unique markers.  If a marker is gen-
erated from any one of these 75 papers and run 
against this database, the only possible outcome is a 
correct diagnosis.           
 
Table 6.  With the appropriate filters applied, a quadruplet 
database of unique markers can diagnose a disorder correctly 
100% of the time. 

 
 
Table 6 offers a gentle wake-up call.  If the IBVD is 
representative of the clinical literature, then three or 
fewer papers (3=3, 2=6, and 1=10) are representing 
86% (19/22) of the disorders.  At some point, such 
small sample sizes will compromise our ability to 
diagnose and predict.        
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Algorithm 6. Test 6. 

 

Test 7: Triplets (Unique Markers)     
 
Diagnosis Database (Triplets):  Test 7 applies the 
procedure described for the quadruplet markers of 
Test 6 to triplet markers (Algorithm 7).  Once again, 
the diagnosis of unknown markers was correct 100% 
of the time (Table 7).  
 
However, we still need one more filter to minimize 
the effect of false positives that may occur when we 
use the diagnosis database to predict a disorder with 
an unknown set of markers – beyond those of the 
IBVD.  This would include, for example, data coming 
from an individual patient.  Recall that a marker of a 
disorder becomes a false positive whenever a con-
trol marker duplicates it.  These duplications occur at 

two levels - papers and databases.  We can remove 
false positives (C=E) from a given paper by identify-
ing duplicates between normal (C) and abnormal (E) 
markers.  Once a diagnosis database is built, it can 
be run against the original database of normal mark-
ers to delete the remaining false positives (C=E for 
all papers) in the database.  This database filter, for 
example, removed an additional 31,275 false posi-
tives from the MRI-T-Diag-100 database of Test 7.  
Remember that when working within a complexity, 
we are always dealing with both local and global is-
sues.      
 
Notice in Tables 6 and 7 that the markers character-
izing 22-27 disorders of the brain came from a rela-
tively small number of papers - 75 for quadruplets 
and 117 for triplets.  Given the tools included in the 
software package, the task of increasing the number 
of papers in play from hundreds to thousands now 
becomes a realistic goal.   
 
Table 7. When filtered appropriately, a triplet database of 
unique markers can diagnose a disorder correctly 100% of the 
time.
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Algorithm 7. Test 7. 

 
The Software Package 

 
The software package includes a new MRI database 
(MRI_2014.db) containing separate databases for 
quadruplet (MRI-Q-DIAG-100%) and triplet (MRI-T-
DIAG-100%, MRI-T-BIG, AND MRI-T-SMALL) markers 
– all derived from the IBVD.  Note that the DVD in-
cludes separate copies of the Sybase and Microsoft 
databases.  The templates, databases, and worked 
examples provided in the software package offer the 
reader a step-by-step approach to clinical diagnosis, 
one that operates comfortably within the framework 
of biological complexity and big data.  
 

DISCUSSION 

One of the most delightful consequences of applying 
complexity theory to biology is that one never knows 
what will happen until it happens.  Surprises, it 
would appear, become a part of the complexity 
package.  Another, somewhat curious consequence 
is that every biological problem seems to have a so-
lution.  Once constructed, a parallel complexity be-
comes a mirror into which we can look to see what 
biology is doing.  This means that by simply engaging 
complexity, we get to enjoy biology as a first rate 
colleague.       
 
The solution to the diagnosis problem described 
herein, however, may seem odd at first reading be-
cause it follows a different set of rules.  Instead of 
using the signs and symptoms of a disorder to make 
a diagnosis, it uses unique markers taken from diag-
nosed patients to define a given disorder as a unique 
phenotype.  Moreover, by applying an appropriate 
set of filters to a parallel complexity (in this case a 
diagnosis database), we can be assured that a diag-
nosis made within this complexity will be correct 
100% of the time.  Such an outcome occurs because 
a convergence exists between biology and our paral-
lel complexity (Appendix III).   
 
Bear in mind that the diagnostic method described 
herein allows us to operate from a position of 
strength.  By encapsulating the expertise of many 
skilled clinicians into a set of unique markers, the 
power of that expertise becomes universally availa-
ble.  In effect, the leveraging power of technology 
becomes enormous.   
 
 

The Tests 

 
The report put complexity theory to the test by ask-
ing a hard question: “Can we develop a data-driven 
approach to diagnosing disorders of the brain?”  It 
qualifies as a hard question for two reasons.  First, 
the properties of these disorders overlap considera-
bly and second, the playing field shifts from small 
data to big.  Moreover, a solution to one depends on 
a solution to the other.   
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The report offers new insight into the mechanism of 
complex problem solving.  To arrive at a solution to 
our diagnosis problem, we had to apply a series of 
filtering algorithms to the original databases of 
mathematical markers.  This process, which began 
with a long string of failures, identified – incremen-
tally - the filters needed to improve the diagnostic 
outcome.  We can take this exhaustive approach to 
problem solving because our shift to big data intro-
duced extensive automation.  This automation came 
largely from the synergies that developed between 
Excel spreadsheets and Access databases.  However, 
given the restrictions imposed by these programs 
related to memory, clipboard capacity, and number 
of rows per table, automating the procedures was 
itself a challenge (Appendix II).         
 
Shared Markers: All the tests based on shared (du-
plicate) markers received failing grades.  The as-
sumption that the diagnosis goes to the disorder 
attracting the largest number of markers proved to 
be incorrect because the duplicate markers of other 
disorders often occurred more frequently.  Although 
the increased specificity of the quadruplet markers 
eliminated some of this masking effect (e.g., no 
masking by schizophrenia in Test 1), it was not 
enough to overcome masking by other disorders.  In 
short, the results of tests 1 and 2 eliminated shared 
markers as a reliable diagnostic tool.     
 
Unique Markers: The results of tests 3, 5, 6, and 7 
indicated that diagnosing disorders of the brain with 
mathematical markers required filters with multiple 
levels of uniqueness.  By aggregating uniqueness, we 
eventually arrived at a filtering algorithm that pro-
duced the correct diagnosis 100% of the time (Tests 
6 and 7).  This result depended on a willingness to 
embrace a closed system, one that guaranteed the 
uniqueness of the markers and the consistency of 
the outcome.  When everything is known, the ques-
tions become the answers and the answers the 
questions.  Big data played an important role in this 
unusual approach to problem solving in that it al-
lowed us to filter our way to a solution.     
 
  
 

False Positives: A diagnostic procedure increases its 
reliability by removing distractors from patient data 
that might otherwise lead to an incorrect result.  In a 
data-driven approach, false positives become a ma-
jor distractor.  In our case, they exist whenever one 
mathematical marker duplicates another at a place 
where mischief can result.  These places exist in indi-
vidual papers and in diagnosis databases whenever 
control markers duplicate experimental (C=E) and in 
diagnosis databases where different disorders share 
the same marker (E=E).  By eliminating these false 
positives, a diagnosis can be correct - 100% of the 
time (Tests 6 and 7). 
 
We know that a patient presenting with a disorder of 
the brain carries both normal and abnormal markers 
– in roughly equal proportions.  This means that an 
unknown data set includes markers that could be 
acting as false positives.  Although most of these will 
not be in play because of the filters applied to the 
diagnosis database, a residual population of normal 
markers will continue to exist as false positives.  We 
can eliminate many of these remaining false posi-
tives by running the unknown markers against the 
database of control markers (MRI-T-SMALL) to re-
move all duplicates – before running it against the 
diagnosis database (MRI-T-DIAG-100).   
 
 

The Disease Process 
Now that we know how to diagnose disorders of the 
brain objectively, our attention can shift to the dis-
ease process.  Since MRI data coming from living pa-
tients frequently generalize both locally (within a 
given paper or lab) and globally (across many papers 
and many labs), we can read the rules that biology is 
using to make, remodel, and repair itself.   
 
Notice in Table 8 that quadruplet markers displayed 
10 different duplicate sets, whereas triplet markers 
displayed 63 (Figure 7).  The counts of duplicates 
identify the amount and range of the generaliza-
tions.  Counts of data sets identify global rules in 
that biology uses the same combinations of parts 
and connections repeatedly.  This modular arrange-
ment allows us to approach the disease process as a 
mathematical puzzle.  Individual markers, which rep-
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resent snippets of larger rules, can be concatenated 
into networks displaying higher levels of order.  Us-
ing this approach, we can begin to model disorders 
of the brain quantitatively using the wide range of 
data types found in the literature.          
 
Quadruplet Markers: Table 8 and Figure 6 summa-
rize the distribution of duplicate markers – and 
groups thereof – in normal patients and in those di-
agnosed with disease.  Even though the alphanumer-
ic string of the quadruplet markers contained eight 
variables, 21% of the markers formed duplicates 
with 2 to 11 copies each.  The shift in the frequency 
distribution of the groups from 2 to 3 and 4 copies 
suggests that the disease process increases connec-
tivity.  This remodeling event may signal the activa-
tion of a shared mechanism for the onset of a dis-
ease.    
 
Table 8. The distributions of quadruplet markers suggest that 
the brain responds to the disease process by increasing con-
nectivity.  Markers shifted from 2 copies per group to 3 and 4.  
Of the 13,360,056 quadruplet markers, 2,802,799 (21%) were 
duplicates.  

Duplicates Normal Disease Normal Disease 

Total Groups Total Groups 

2 832246 416123 1447108 723554 91.47% 76.45% 

3 56139 18713 319635 106545 6.17% 16.89% 

4 14616 3654 114984 28746 1.61% 6.07% 

5 3660 732 8135 1627 0.40% 0.43% 

6 1368 228 1722 287 0.15% 0.09% 

7 462 66 840 120 0.05% 0.04% 

8 768 96 288 36 0.08% 0.02% 

9 432 48 270 30 0.05% 0.01% 

10 60 6 0 0 0.01% 0.00% 

11 66 6 0 0 0.01% 0.00% 




Figure 6. Most of the markers have 2, 3, or 4 duplicates in the 
normal (99.3%) and disease (99.4%) data sets.  Notice, howev-
er, that in disease we find an increase in specificity by shifting 
the distribution of duplicates from 2 to 3 and 4.  In both cases, 
the curves follow an exponential rule.  Recall that such a rule 
was found earlier with ladder equations (Bolender, 2004).  

Triplet Markers: The original database of triplets 
(MRI_T_Small.accdb) included 381,476 duplicate 
markers, which represented 47.2% of the total (Fig-
ure 7).  The number of duplicate markers ranged 
from 2 to 64.     
 


Figure 7. The distribution of triplet markers (C+E) shows dupli-
cations ranging from 2 per group to 64.  

The data in Figure 7 were collected with an Access 
database by modifying the SQL script used to select 
duplicates (right click tab, select SQL View).  Figure 8 
illustrates the method.  In the original script, the 
query used <…Having Count(*)>1 )))> - top panel.  
The modified script (middle panel) selects only those 
markers with 10 duplicates  <…Having Count(*)=10 
)))>.  The script was run (right click tab, select 
Datasheet View) to view the results (bottom panel).    
 

 


Figure 8. Top: SQL script for finding duplicates.  Middle: Modi-
fied script to collect markers with a set number of duplicates 
(10).  Bottom: The output table identifies the markers with 10 
duplicates (1520 total markers, 152 groups in bin 10).   
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Figures 8 and 9 illustrate ways in which we can com-
bine the strengths of the Microsoft and Sybase data-
bases - within the framework of complexity theory – 
to work out the patterns and relationships between 
brain disorders.  The query by example (QBE) 
frontend to the original triplet database provides 
ready access to all the data contained therein (Figure 
9).   
 


Figure 9. The query by example (QBE) front-end of the triplet 
database greatly simplifies the task of finding highly specific 
information - quickly.  

 

Caveats 
 
Online Access to Published Data: Problem solving 
throughout the biology enterprise will depend - in-
creasingly - on open access to large amounts of data 
online.  This becomes unavoidable as our investiga-
tive models for biology shift from simple to complex 
– as they must.  The new diagnostic procedures de-
scribed herein could not exist, for example, in the 
absence of the Internet Brain Volume Database.  
Regrettably, such databases are few in number and 
often hard to find.   
 
Some facts are indisputable.  Complexity is a big data 
game and in the absence of such data, we cannot 
become players.  The single, greatest threat to our 
success as a science going forward is the largely un-
challenged construction of paywalls around our da-
ta.  Try to run a literature search on PubMed or 
Highwire and the severity of this threat becomes 

obvious.  Curiously, the solution to this problem is 
both simple in design and easy to accomplish.  We 
need to publish our data simultaneously in both 
paywalled journals and in open access databases.  As 
such, win-lose becomes win-win.  In our case, the 
success of the IBVD as an open access model for 
publishing data is demonstrated by the fact that we 
now have a new collection of databases for diagnos-
ing disorders of the brain.             
 
Heterogeneity:  Given the eclectic makeup of the 
diagnosis databases, the results of the tests seem 
quite remarkable.  Data came from patients with 
different disorders, severities, ages, genders, treat-
ments, and sample sizes – using different methods 
of data collection and analysis.  A more heterogene-
ous group of patient data is difficult to imagine.  In 
spite of these presumed shortcomings, the mathe-
matical markers were still able to deliver the correct 
diagnosis.  Moreover, the number of duplicate 
markers one finds by scrolling through the original 
databases demonstrates the remarkable ability of 
biology to maintain the stoichiometry of its parts in 
such diverse settings.  This pattern of order persists 
relentlessly in data pair, triplet, and quadruplet 
markers.  Wherever we look, the same rules remain 
in play and in plain sight.      
 
Individual Patients:  The big unknown remains the 
diagnosis of a single patient.  Since the testing pro-
tocol relied exclusively on average patient data, 
nothing can be said about its application to individu-
al patients.  Individual patient data were simply not 
available to test.  All we can do is surmise that the 
assignment of decimal repertoire values to the ratios 
of the original data provides enough of a buffer that 
will work to our advantage with individual patient 
data.  Once again, data access becomes the major 
limiting factor in resolving such issues. 
 
 

Opportunities 
 
Complexity theory allows us to unify data across the 
biology enterprise with mathematical markers, 
which can standardize and connect most types of 
published data (Bolender, 2001-2014).  By translat-



16 
 

ing the biology literature into big data, problem solv-
ing can become automated and exhaustive.     
 
Clinical Diagnosis: By translating the IBVD into 
mathematical markers, it can serve as a gold stand-
ard for diagnosing disorders of the brain objectively 
(Figure 10).  This approach creates a built in support 
structure wherein we can rely on data coming from 
expert investigators to guide the outcome of a diag-
nosis.   



 
 
Figure 10.  Databases allow us to generate a host of new appli-
cations from the biology literature.  The Internet Brain Volume 
Database, for example, currently serves as a gold standard for 
diagnosing disorders of the brain objectively.    

 
An objective approach to diagnosis becomes a key to 

opening numerous doors to progress in the life sci-

ences.  Recent reports, for example, indicate that 

disorders, predispositions, treatments, and expo-

sures can leave quantitative tracks throughout an 

organism, especially in the brain (see, for example, 

Cecil et al. 2008, Guido et al. 2013, Herting et al. 

2014, Khan et al. 2011, Strassburger et al. 1997, and 

Tiehuis et al. 2008).  Such information when com-

bined with technology could spark new industries.  

  

Clinical medicine may soon have its own “iPhone” 
revolution along with a wave of innovative applica-
tions.  A handheld device, for example, with an array 
of sensors might pick up enough information to as-
semble a diagnostic and predictive phenotype by 
simply comparing samples to known standards.  
Since everything in a biological complexity is con-

nected, such outcomes seem quite likely.  Once 
again, the database becomes the solution.  In fact, 
something exciting may soon happen.  A startup – 
called Butterfly Network, Inc. – plans to introduce 
handheld scanning devices for MRI and ultrasound 
with built in diagnostics.  If these devices provide 
volume data, then the data set of an individual could 
be analyzed – at least provisionally - within the exist-
ing framework of a diagnosis database (MRI-T-DIAG-
100).      
 
Big Data: Technology has reached the point where 
we can accumulate and analyze very large data sets.  
Our health care systems, which deal almost exclu-
sively with events occurring at the level of pheno-
types, are currently trying to figure out how to use 
enormous amounts of patient data constructively.   

Figure 11 considers the phenotype of an individual 
over a lifetime of ten decades.  A comprehensive set 
of markers collected, for example, at ten-year inter-
vals will provide a diagnostic set that becomes – ret-
rospectively – perfectly predictive.  When collected 
from a large numbers of individuals, such infor-
mation provides a global resource that can assign 
predictions to the diagnosis of an individual pheno-
type – at any point in time.  In effect, the diagnosis 
of one patient becomes the predictor of another. 

 

Figure 11.  Like trees, phenotypes accumulate a history of our 
lives that we can record, read, and interpret with mathematical 
markers.  It allows us to evaluate our past and current state 
and to predict our future.       
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Abnormal Brain Phenotypes: Disorders change the 
patterns that define a phenotype, which we can cap-
ture with mathematical markers.  By unfolding the 
brain, for example, into its component parts and 
connections, we quickly discover that many of the 
same patterns appear across a wide range of differ-
ent disorders (this report, Bolender, 2012 and 2013).   
 




Figure 12. Disorders of the brain can be unfolded into collec-
tions of shared and unique markers.  Repairing the marker in 
row 5, for example, might result in widespread and dramatic 
benefits.  

Such an observation triggers new possibilities.  If 
disorders share similar etiologies, then they may also 
share similar solutions and treatments.  This sug-
gests that by shifting our focus from treating symp-
toms to identifying and repairing the underlying ab-
normalities, we may end up solving a host of differ-
ent problems simultaneously (Figure 12).  The cost 
effectiveness of such an approach could be enor-
mous.   
 
The point, which now seems inescapable, is that dis-
orders of the brain involve enormous complexity.  
Working out the underlying patterns will no doubt 
require large data sets drawn from a wide range of 
disciplines.  Hunting for such patterns becomes both 
a compelling and worthwhile adventure because we 
will be reinventing biology as a quantitative science.      
 
 

Reality Check 
 
Modern day biology suffers from grievous flaws.  In 
biology, everything connects within and across spe-
cies, defining vast complexities and interrelation-
ships.  In biology as we practice it, little or nothing is 

connected.  Biology runs on complexity, we run on 
reductionism.  Biology uses its data (parts and con-
nections) to generate emergent properties that cre-
ate dazzling outcomes.  We use largely data isolated 
from biology to look for significant differences that 
ultimately require the context of complexity to ex-
plain and understand.  Biology plays by the rules of 
nature, we play - all too often - by our own rules.  
Biology already has most of the solutions, whereas 
we are still trying to figure out how to set up the 
problems.   
 
We lack a critical understanding.  As a product of 
nature, biology like physics and chemistry is a math-
ematical discipline.  It operates by well-defined and 
thoroughly tested rules that can be captured math-
ematically.  By allowing biology to develop as a de-
scriptive science, however, we have constructed 
unwittingly an artificial wall between our common 
languages of mathematics.  Biology is speaking 
mathematics as it creates the complexities that give 
rise to emergent properties.  In contrast, we often 
speak with the throttled data of countless methods 
that may or may not have anything to do with biolo-
gy (Bolender, 2013).   
 
The promise of mathematical markers as the syntax 
of a common language derives from the fact that 
they order data exactly the same way that biology 
orders its parts – according to stoichiometric rules.  
When we capture biology quantitatively as a pheno-
type, these markers can combine to generate paral-
lel complexities capable of producing their own 
emergent properties.  By applying this construct to 
the biology literature, we can use published data to 
read biology mathematically as a complexity.  As de-
scribed in this report, our newly acquired ability to 
diagnose disorders of the brain is an emergent prop-
erty coming to us from biology by way of the IBVD.          
 
 

Concluding Comments 
 
Complexity theory allows us to explore the relation-
ship of diagnosis to prediction in biology.  Diagnosis 
defines a phenotype at a given point in time, where-
as prediction extrapolates the phenotype in time 
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into the future or back to the past.  Diagnosis is the 
key.  If we do not know what we are at a given point 
in time, we cannot know what we were or what we 
are likely to become.  In effect, diagnosis and predic-
tion lie at the heart of the biology enterprise.            
 
By making the transition from small to big data, we 
now have databases capable of diagnosing disorders 
of the brain with a reliability of 100% - within the 
boundaries defined by the IBVD.  This represents a 
promising first step.   
 
If we wish to become more effective as a science, we 
need to move our methods and thinking into the 
realm of complexity.  To do this, we want to become 
privy to and play by the same rules and algorithms 
that biology uses to run its business.  Then, and only 
then, can we begin to tackle the truly difficult prob-
lems.  Few would argue that biology knows many of 
the most profound secrets in our universe, but even 
fewer would admit that until we begin to flush them 
out mathematically, we could never be more than a 
descriptive science.  As we make the inevitable shift 
to mathematics and complexity, everything will 
change dramatically – mostly to our advantage.                   
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APPENDIX I 

 

Distributions of Quadruplet Markers 
 
Each figure below indicates that a given disorder car-
ries a distinct set of quadruplet markers (red), most 
of which appear in other disorders (blue).  In effect, 
this widespread sharing of similar sets of compo-
nents suggests a modular basis for the formation of 
disorders in the brain.  Using a common pool of parts 
and connections, the brain appears to be rearrang-
ing modules derived therefrom to produce new pat-
terns with new emergent properties.        
 
The question yet unanswered deals with the motiva-
tion behind these disorders.  Is the brain trying out 
new combinations of modules to become more suc-
cessful or is it simply responding to mistakes?   
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APPENDIX II 

 

Algorithms 
 
Figuring out how to assemble a diagnostic database 
from the biology literature involves a number of 
steps and software programs.  For convenience, we 
can summarize the process with three algorithms: 
making mathematical markers, populating a data-
base, and diagnosing an unknown.    
 
Summary: We begin with the permutation function 
of Mathematica that allows us to generate alpha 
strings from lists of parts (IBVD).  An Excel template 
simplifies the task of populating these strings with 
data to produce mathematical markers, which, in 
turn, are filtered, aggregated, and saved as tab de-
limited text files.  When imported into Access these 
files become databases, which, for example, can un-
dergo additional filtering to produce diagnostic 
tools.  A diagnosis consists of appending a text file of 
unknown markers to the diagnosis database and 
then matching unknowns to knowns.     
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The triplet template includes a data set entered for publication 126 of the IBVD.  Begin by entering the citation 
numbers, delete the contents of the three parts columns (A, B, C), replace them with the new ones generated 
with Mathematica, delete the contents of three columns X, Y, and Z (F, G, H), and assign new values to the parts. 

 
 
Use a split screen to arrange the worksheet with the data values above the template.  Begin by copying the data 
for amygdala (2.59) from the top sheet and pasting it in the lower sheet (row 2, column X (F)).  Click on the data 
field, move the pointer to the lower right hand corner of the box, hold the left button down, pull on the corner 
to fill all the boxes below with the value for the amygdala.  Repeat this procedure for all the remaining data.  
When finished, highlight the column of data – X (F) – and copy it to a new worksheet (2) in the same workbook.  
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Fill the remaining two columns (G and H) using the column of data stored in worksheet 2, as follows.  The High-
light the entire screen (Ctrl-A), sort on column B, copy the column in worksheet 2 and paste it into column G 
(Label the column Y).  Repeat the procedure for the third data column (H (Z)). 

 
 
The resulting screen will have data stored in columns X, Y, and Z.  Delete the contents of rows M and N. 

 
 
Highlight screen, sort on column Y (J), and then translate the numbers in column J to decimal repertoire values 
in column M - use the connection_phenotype_worksheet.pdf in the Forms section of Documents in the software 
package.  When completed, store the completed column in worksheet 2.  Finally, highlight the screen, sort on 
column Z (K), copy the column from worksheet 2, and paste it in column N.     

 
 
Worksheet 2 displays the columns of data used for data entry (A=original values, C=decimal repertoire values). 
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The completed data entry screen appears below.  The next step consists of producing a text file that can be im-
ported into Access to become a database.  Triplet markers, which concatenate three parts (A, B, C) with three 
values (X, Y, Z), must first be converted into text strings.  Highlight column F, right click, select Insert, highlight 
column E, copy column E, and paste it into the newly created column.      

 
 
When copied, the markers in column F will not match those in column E – click on the first Paste Values labeled 
123 and they will.    

 
 
Make a backup copy of the workbook.  Finally, highlight the columns as shown below, right click, and delete. 

 
 
Remove the heading, highlight the page and select no border, arrange the order of the columns as shown, add a 
term – if absent - in column D (e.g., hold) to identify the existence of the attributes column, and store the work-
sheet as a tab delimited text file (.txt); name it TEST-TRIPLET-DATABASE.txt. 
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A text file created in Excel (TEST-TRIPLET-DATABASE.txt) becomes a database when imported into Access.  To 
illustrate the process of creating a database and using it to diagnose an unknown, we will use this text file (cit 
nu=126) both for the database of disorders (schizophrenia) and for the unknown data (we will change schizo-
phrenia to unknown).  To do this, copy the text file (TEST-TRIPLET-DATABASE.txt) as TEST-TRIPLET-
UNKNOWN.txt, open it, and replace schizophrenia with normal.  
 
6First, we make the database.  Run the Access database, select Blank desktop Database, name it Test-Triplet-
Database, and click on Create.  The following screen appears with an open, but empty table.  Close the table.  
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Click on EXTERNAL DATA.  Select the text file for the database – TEST-TRIPLET-DATABASE.txt and click on Open.

 

Select Import the source data into a new table in the current database.  Duplicate the following screens. 
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The result is a new Access database containing a file of known markers coming from publication 126 of the IBVD.   

 

 

In the next example (Diagnosing an Unknown), we will import the unknown file (TEST-TRIPLET-UNKNOWN.txt), 

and run it against the TEST TRIPLET DATABASE.   
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The algorithm on the left describes the ongoing example, whereas the one on the right uses the complete 

diagnosis database.  In the software package, the Test7 database becomes MRI_T-DIAG-100.accdb.     
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With the TEST-TRIPLETS-DATABASE.accdb open and all the tables colosed, select EXTERNAL DATA and then Text 

File.  When the screen below appears, click on the Browse… button, find the file < TEST-TRIPLETS-

UNKNOWN.txt> and select Append a copy of the records to the table: TEST-TRIPLETS-DATABASE.  Continue 

clicking on the Next button until the Import Wizard is finished. 

  

At this point, the database contains markers for both the knowns and unknowns.  To find out the disorder 

associated with the unknows markers, select CREATE and click on Query Wizard.  When the New Query screen 

appears, select Find Duplicates Query Wizard.  Duplicate the screens as shown below and click Finish.     
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The duplicates reveal that the unknown markers come from patients with schizophrenia – the correct diagnosis.   

 

 

If instead, we run the unknown markers against the full diagnosis database, we also get the correct diagnosis of 

schizophrenia.  Notice that the unknowns are also being detected correctly with markers coming from other 

papers (e,g., 587 and 629).   
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APPENDIX III 

 

Theory of Biological Complexity 
 
The overarching principle of the new theory is that it 
takes a complexity to solve a complexity.  This means 
that to test the theory empirically we need to con-
struct a parallel complexity as close to the original as 
possible, relying exclusively on the rules that exist 
first in biology and then mirrored in our complexity.  
The sampling methods of stereology play an essen-
tial role in this building process by providing access 
to unbiased data and by supplying equations that 
can estimate and connect the data of a parallel com-
plexity.   
 
Complexity is an unfamiliar place.  New rules apply, 
our perceptions change, and we get to ask and an-
swer questions differently.  The first order of busi-
ness is to learn the rules of the game, which in sci-
ence consists of developing a new theory structure.  
This represents an ongoing process wherein the the-
ory evolves in step with the discovery process.   
 
Recall that the fundamental building blocks of a bio-
logical complexity include parts and connections.  
Volumes, surfaces, lengths, or numbers define the 
parts quantitatively and ratios derived therefrom the 
connections.  From this simple beginning, the com-
plexity of an organism grows as the parts and con-
nections cascade throughout the hierarchical levels 
of an organism.  Since everything consists of the 
same basic building blocks and all the blocks are 
connected, our parallel complexity begins to resem-
ble the original biology – at least on a limited scale.  
Testing the theory consists of looking for persistent 
patterns - locally and globally – and then using these 
patterns to define the rules of the game.     
 
A collection of working lists, including Goals, Re-
quirements, Basic Principles and Definitions, Deriva-
tives, and Rationale summarize recent progress in 
constructing this new theory structure. 
 
Theory of Biological Complexity: In its simplest 
form, the theory states that it takes a complexity to 

solve a complexity.  We can define a biological com-
plexity mathematically as a distinct set of elements 
(parts and connections) that combine to form pat-
terns (e.g., mathematical markers) capable of scaling 
at both local and global levels.  Typically, biology dis-
plays its complexity as a stoichiometry based on the 
ratios of it parts.  Biology uses this simple rule to 
create both order and disorder.  We define a rule as 
a mathematical pattern that persists at both local 
and global levels.      
 
Theory Structure:  The accompanying theory struc-
ture includes a current set of guidelines for exploring 
biology as a complexity.  Items highlighted in red 
identify recent additions, whereas items highlight-
ed in green identify areas of notable progress. 
 
 
Goals 

 Generalize the data of the biology literature.  

 Define and assemble a data-driven approach to 
the basic and clinical sciences. 

 Identify mathematical patterns in biology. 

 Explore biology as a rule-based system. 

 Use published data to create a parallel com-
plexity using rules intrinsic to biology. 

 Remove postmortem distortions by harmoniz-
ing pre and postmortem data.    

 Offer alternatives to the misguided practice of 
comparing concentrations in a biological set-
ting. 

 Demonstrate the effectiveness of a new ap-
proach to problem solving based on empirical 
data and guided by the rules of biology.  

 Develop software that can accelerate produc-
tivity by transforming biological data into prob-
lem-solving tools. 

 Capture biological phenotypes mathematically 
and use them to diagnose and predict out-
comes. 

 Evaluate current methods in the basic and clini-
cal sciences. 

 Assemble a diagnostic platform from the biolo-
gy literature that can provide the correct diag-
nosis 100% of the time. 

 Advance the technology surrounding mathe-
matical markers from small to big data. 
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 Figure out how to extract meaningful patterns 
from large data sets. 

 Identify algorithms that biology uses to create 
disorders of the brain.  

 Connect phenotypes to genotypes. 

 Optimize outcomes. 
 
Requirements 

 Collect data with unbiased sampling methods. 

 Express data as volumes, surfaces, length, or 
numbers.  Concentration data formed from the-
se and other parameters are subject to specific 
rules and limitations (See earlier reports).   

 Assemble data as connected sets.  

 Integrate data within and across hierarchical 
levels. 

 Use a common format to organize and general-
ize data. 

 Configure data to accommodate local and global 
patterns simultaneously. 

 Operate within the bounds of a complexity par-
allel to the one of biology. 

 Correct the volume distortions associated with 
postmortem data. 

 Reconfigure data sets to enhance diagnostic and 
predictive properties. 

 Define the outputs of a database by applying 
filters. 

 Store and distribute data in digital form. 

 Encourage open access to data.         
  
 
Basic Principles and Definitions 

 A biological complexity consists of parts and 
connections distributed hierarchically.   

 Complexities can be both local and global.   

 A biological complexity can unfold into smaller 
patterns or fold into larger ones. 

 Parts and connections define the organizational 
framework of biology as distinct patterns.  As 
such, they represent a rule-based management 
system. 

 A parallel complexity represents a data-driven 
construct designed specifically to capture biolog-
ical complexity quantitatively. 

 Ratios and derivatives thereof (i.e., mathemati-
cal markers) serve as the basic units of infor-
mation in a parallel complexity.  

 Mathematical markers include parts (names) 
and connections (ratios). 

 A second complexity exists in the postmortem 
data of biological stereology, produced by the 
methods of specimen preparation and data col-
lection. 

 Parts display quantitative (volume, surface, 
length, number) and qualitative properties 
(names, locations).   

 All parts are connected or connectable by form-
ing ratios. 

 A ratio defines the relationship of one part to 
another.  Moreover, ratios define nested and 
modular sets of connections within and across 
hierarchical levels.  

 Parts and connections form patterns that scale 
in size, beginning with a ratio of two parts and 
ending with a ratio of n parts - where n would 
represent an entire organism.   

 Patterns captured as mathematical markers in-
crease their specificity as the number of parts 
and connections in the marker increase. 

 In living subjects, mathematical markers routine-
ly detect the same patterns (e.g., markers) local-
ly and globally. 

 In postmortem subjects, mathematical markers 
can detect the same local and global patterns, 
but only when correction factors for volume dis-
tortions are applied. 

 Prediction in complex living systems requires 
interactions with parallel complexities capable 
of producing a correct diagnosis 100% of the 
time. 

 Valances describe the ability of the same set of 
parts to display different numerical ratios (con-
nections).  They reflect biological rules of stoi-
chiometry. 

 
 
Derivatives 
A derivative includes - as a minimum - the names of 
two parts and their corresponding values formed 
into a ratio.  In forming a ratio, the original published 
values may be used directly (repertoire value) or 
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converted to a decimal step (decimal repertoire val-
ue).  Data pair ratios take the form X:Y, data triplets 
X:Y:Z, and data quadruplets X:Y:Z:Q.  Mathematical 
markers add the names of the parts (A, B, C, D) to 
the ratio: AX:BY, AX:BY:CZ, and AX:BY:CZ:DQ.     
   
Data Pairs 

 A data pair consist of two parts (names) and two 
connections (ratios) expressed as repertoire and 
a decimal repertoire values.  Data pairs can be 
formed by inspection or by taking all possible 
permutations of the names of the two parts – to 
which numerical values are assigned. 
o Data pair values – expressed as a decimal 

step (decimal repertoire value) – combine 
with names to form mathematical markers.  

o A data pair can use data before or after cor-
rections are applied for the volume distor-
tions of postmortem material. 

o Data pairs display valences in that the same 
two parts can occur in different proportions. 

 
Data Triplets 

 A data triplet consists of three parts and three 
connections with the ratios expressed as reper-
toire and decimal repertoire values.  Triplets are 
formed by inspection or by taking all possible 
permutations of the three names of the parts – 
to which numerical values are assigned.  Math-
ematical markers use decimal repertoire values.    
o A data triplet can use data before or after 

corrections are applied for the volume dis-
tortions of postmortem material. 

o Triplets display valences in that the same 
three parts can occur in different propor-
tions. 

 
Data Quadruplets 

 A data quadruplet consists of four parts and four 
connections with the ratios expressed as reper-
toire and decimal repertoire values.  Quadru-
plets are formed by inspection or by taking all 
possible permutations of the four names of the 
parts – to which numerical values are assigned.  
Mathematical markers use decimal repertoire 
values.    

o A data quadruplet can use data before or af-
ter corrections are applied for the volume 
distortions of postmortem material. 

o Quadruplets display valences in that the 
same four parts can occur in different pro-
portions. 

 
Properties of Data Pairs, Triplets, and Quadruplets 

 Data pairs, triplets, and quadruplets form both 
general and diagnostic patterns that can be 
unique or shared. 

 Conservation of patterns occurs within and 
across animal species. 

 All patterns and their antecedents can be stored 
in a single database table.   

 Mathematical markers – as a universal data set - 
offer a general solution to the problem of biolog-
ical complexity. 

 Mathematical markers can detect the distorted 
volumes of postmortem brains. 

 The sensitivity of mathematical markers in-
creases by adding variables.   

 
 
Rationale 

 Complexity theory represents a long overdue 
response to the limitations of our current theory 
structure based on reductionism. 

 Reductionist theory takes biology apart, studies 
parts in isolation, and applies statistical tests to 
detect changes.  It purports to simplify biology, 
but instead adds a second complexity, often 
making reliable interpretations difficult to im-
possible.  This second complexity includes a wide 
range of distortions caused by death and by the 
methods of specimen preparation and data col-
lection.  Concentrations, which are the most 
common form of biological data, often fail to de-
tect biological changes accurately because they 
ignore complexity.  In a biological setting, com-
paring concentrations involves four variables not 
two – a fact largely unknown to biologists.  Hier-
archy equations, which are used to convert con-
centrations into absolute values, can be ex-
pected to fail when the variables used to evalu-
ate the equations carry volume distortions.       
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 The methods of reductionist theory minimize the 
effectiveness of published data, obscure biologi-
cal patterns, and substitute reproducibility and 
significant differences for accuracy.  By corrupt-
ing biological data, such methods actively im-
pede learning, discovery, and innovation. 

 Quantifying biology in the absence of a theory 
structure consistent with biological complexity 
will not turn biology into a quantitative science. 

 Complexity theory addresses many of the limita-
tions imposed by reductionism, while adding a 
host of new capabilities.  A principal argument 
for studying biology within the framework of 
complexity theory is that it simplifies everything 
and provides a tent large enough to accommo-
date all parts of the biology enterprise. 
o Absolute values can be estimated without 

hierarchy equations. 
o Mathematical markers transform old forms 

of biological data into new patterns con-
sistent with complexity. 

o All mathematical markers can be stored in a 
single database table, searched for patterns, 
and used directly for problem solving. 

o By defining phenotypes robustly, mathemat-
ical markers support diagnosis and predic-
tion. 

o Quantitative phenotypes can provide math-
ematical pathways to and from the genome. 

o Mathematical markers can detect the algo-
rithms biology uses to define itself in health 
and disease.  

o Biological patterns exist both locally and 
globally. 

o Global patterns lead to generalizations and 
rules. 

o The biology literature  can supply the large, 
integrated data sets fundamental to com-
plexity theory.  

o Forming data ratios (data pairs, triplets, and 
quadruplets) helps to minimize bias. 

o Outcomes can be subjected to rigorous test-
ing. 

o New data formats capture the complexity of 
biology as patterns.     

o Patterns can provide multiple solutions to 
the same problem.   

o Data distortions can be identified and cor-
rected. 

o Prediction in biology relies importantly on 
diagnosis. 

o Parallel complexities consisting of unique 
markers can diagnose outcomes correctly 
100% of the time – in well-defined settings.   

 
 


