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Since biology as a science continues to struggle with the problem of reproducibil-

ity, many now believe that every effort should be made to increase the precision
of our estimates. Although a worthwhile goal, others might argue that precision
in science is a poor substitute for accuracy. To avoid taking sides, the report uses
a reproducibility test to discover where the precision and accuracy of biology can
exist togetherin our published data. The advantage of such an approach to prob-

lem solving is that it requires little more than figuring out where and how to look.
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SUMMARY

Our currenttestfor reproducibility in the lifesciences relies largely on local precision, namely duplicat-
ingthe results of a given experiment. In contrast, biology seemsto need two rules to fulfill its reproduc-
ibility requirements. The size of agiven partisunderlocal rules (precision), whereas the relationship of
one part to anotherfollows global rules (accuracy). Inthisreport, we will attempttotapintothese rules
of biology with the goal of constructing areproducibility test based on accuracy. Since any given species
includes many similar copies, we already knowthat biology is very good at playing the accuracy game
globally. This simplifies ourtask considerably by reducingitto an exercise in finding these global pat-
ternsinthe biology literature. Moreover, such patterns would offer empirical evidence forthe existence
of design principles basicto reproducibility. To assemble areproducibility test, published data from
more than a thousand papers were translated intotriplets and expressed as mathematical markers and
connection ratios. When mathematical markers were plotted against their connection ratios and
viewed graphically, global patterns consistent with both accuracy and precision appeared in surprisingly
large numbers. These patterns were found in the MRI data (volumes) of asingle species (human) andin
stereological data (numbers and surfaces) encompassing many species. Inshort, all the data sets exam-
ined demonstrated the ability to pass areproducibility test based on accuracy. Such results suggest that
the biology literature contains data far more accurate than our traditional precision-centrictests are
tellingus. The test databases also detected the presence of global patterns within and between orga-
nelles, cells, species, exposures, and disorders. Although such an outcome was unanticipated, thisis ex-
actly the overarching pattern we should be finding throughout the biology literature. Inadditionto
many animal species sharing considerable portions of theirgenomes, it would now appear that DNA
sharingapplies notonlyto genes codingfor proteins, but also to the yet unidentified sequences or other
devices coding forthe design principles responsiblefor phenotypic patterns. If this provestobe the
case, then prediction toand from DNA becomes areasonable goal. Since only about 3% of our DNAis
allocated togenes codingfor proteins, itseems likely that the larger part of the DNA story (97%) will be
about the roles being played by these intergenicsequences in designing and controlling phenotypes.
The report also considers how this expanded view of DNA mightinfluence the way we study the human
brain. By identifying extensive populations of abnormal phenotypicpatternsin brains displaying disor-
ders, literature databases might speed the task of figuring out what parts of the DNA need repairing —
genetic, intergenic, orboth. Here our goal would be to create a quantitative link between the pheno-
type and its DNA, wherein extensive datainteractions become an essential part of the problem-solving
process. A final note. The reportsand resources previously distributed on DVDto contributing authors
will now be published online at playingcomplexitygames.com.




INTRODUCTION

Reproducibility is defined as an ability to dupli-
cate the results of an experiment either by the
same researcheror by an independent one. De-
fined assuch, it appearsto be more a measure
of precision (repeating the same result), than of
accuracy (correctness). Hereinliesaproblem.
To be valid, ameasurement system requires
both precision and accuracy.

Reproducibility continues to be the Achille’s
heel of ourscientificcommunity (Collins and
Tabak (2014), Begley and loannidis (2015),
Freedman et. al (2015), Roth and Cox (2015),
Engber(2016)). Nature (Baker, 2016), for exam-
ple, recently used aquestionnaireto highlight
the consensus view thatareproducibility crisis
currently existsinscience. Afterreading Na-
ture’s questionnaire and viewing the recom-
mendations of the BiophysicalJournal (2015),
however, oneisledtobelieve thatimproving
reproducibility will resultin a higher quality of
science. Since many of the improvements being
suggested deal largely with precision, such a
prognosis might be overly optimistic. Recall
that a precise estimate can be eithercorrector
incorrect. Thisis an indisputable fact.

Giventhiswidely understood limitation of pred-
sion, why not base our definition of reproduci-
bility onaccuracy? But how can we expectto
demonstrate accuracy with biological data
whenwe’re currently having such a hard time
with precision? All we need are a few basic
questionsto getus started. Does reproducibil-
ity existinbiology? Yes, biologyreproduces —
very effectively —vast numbers of animals that
we identify as belonging to distinct species.
Moreover, reproducibility is fundamental to all
parts of biology because to have emergent
properties (e.g., life, thoughts, success, survival)
it must connectthese partsto form highly spe-
cific, predictable, and adaptable patterns. If
true, then one can argue that biology mustbe

taking the highroad — the accuracy approach to
reproducibility. Any proof? Yes. Isbiology suf-
feringfrom a reproducibility crisis? No.

Isitpossible toassemble arobusttestforre-
producibility - based on a strategy similarto the
one biology uses? What—exactly - is biology’s
strategy? Whenfaced witha complex problem,
biology can bring at leastthree key playersinto
the game - parts, connections, and complexity.
Can we do the same? What would it take?

To be convincing, we would need to make our
reproducibility test much harderto pass than
the one described in Nature (Baker, 2016). In-
stead of limiting the definition of reproducibility
to that of a single study, we would have to ex-
pandit to include all applicable studies storedin
our biology literature databases. Notice that by
movingthe definition from local to global, we
automatically shift the focus of the test from
precisiontoaccuracy. Moreover, byreplacing
the simple variable (data point) witha complex
one (triplet mathematical marker), sixvariables
— notjustone —must be duplicated not just
once, but three ormore times across the litera-
ture. Notice the strategyin play. By makingthe
testimpossibleto pass unless biology allowsiit,
we leave ourselves little choicebut to accede to
biology’s definition of reproducibility, which in-
cludesaccuracy. Besides, deferringto biology
tendsto inspire confidence. Italready knows
how to solve the most difficult problems.

METHODS AND RESULTS

The Enterprise Biology Package

In collaboration with the community, the Enter-
prise Biology Software Project transforms pub-
lished research datainto patterns capable of



addressingand solving awide range of complex
problemsin biology (enterprisebiology.com). A
yearly progress report includes databases, files,
and directions for repeating the currentresults
(Figure 1). Thisyear, a worked example of the
reproducibility test described hereinis being
distributed online (playingcomplexityg-
ames.com). Itintroducesthe readertothe pro-
cess of solving complexproblems with data-
bases.

A

Figure 1 The package includes the yearly report accompa-
nied by worked examples, databases, et cetera.

The Reproducibility Test

The reproducibility test requires anew data
type called the connectionratio. Definedasan
alphanumericstring, it consists of atriplet
mathematical marker (AX:BY:CZ) with the
names of its parts (A, B, C) all changedto the
same name (Part): (PartX:PartY:PartZ). Assuch,
onlythe valuesof the ratio (X:Y:Z) are in play.
The renaming operationis done in Excel and
can be duplicated by downloading one of the
filesdescribedin Appendix I.

Table 1 summarizesthe volume, number, and
surface databases usedinthe report. The vol-
ume (V) data were derived fromthe Internet
Brain Volume Database (IBVD) (Kennedy et.al
2012), whereasthe number(N) and surface

area (S) data came from the stereology litera-
ture database (Bolender, 2001-2016). Notice
that the MRI data represented the most effi-
cientsource of global information (41.6%),
whereas cell counts (N) the least (1.1%). At
5.7%, surface areas had an efficiency rating
roughlyfive times greaterthanthe one for
number—evenwithitssmallersample size.

Table 1 The table summarizes the sample sizes used for the
reproducibility tests. Note that the volume-based plot dis-
played in Figure 3 used only 2,500 of the 155,891 dupli-
cate markers (23). Abbreviations include MRI (magnetic
resonance imaging), LM (light microscopy), and TEM
(transmission electron microscopy).

Data Types > Volume Num- Sur-

ber face
Data Sources—> MRI LM TEM
Mathematical Markers | 374,906 | 108,824 | 21,402
Duplicates (23) 155,891 1,236 1,221
Efficiency (Reproduci- 41.6% 1.1% 5.7%
bility)

Global Data = Reproducibility = Accuracy

When working under the aegis of complexity
theory, the focusinvariably shifts from local to
global. Both mathematical markersand con-
nectionratios signal the presence of global data
when the same string occurs repeatedly. For
our purposes here, global datawill serve as the
measure of reproducibility.

Design of the Test: The reproducibility test uses
the CommunityGraphPlot of Mathematica 11
(Wolfram) to display the relationship of mathe-
matical markersto connection ratios (Figure 2).
The results are expressed as a collection of
units, wherein ameasure of accuracy (a mathe-
matical marker) is duplicated as a measure of
reproducibility. Ineach unit, the numberof du-
plicate markersis equal tothe numberoflines
connectinga mathematical markertoits con-
nection ratio. The strength of the testdepends
on the number of connectinglines (forming
blue spindles) and the total numberof unitsin



play. The number of different mathematical
markers associated with agiven connection ra-
tiois a measure of the preference given to that
ratio by biology. To pass the test, reproducibil-
ity must exist within and across many units.

Connection
Ratio

Connections

Mathematical
Marker

/

‘N:w\mlyé'n:h

Figure 2 Reproducibility can be expressed quantitatively as
a unit of complexity, one that displays a highly specific
pattern. By plotting mathematical markers (peripheral
dots) against their connection ratios (central dot), we can
test for the presence of reproducibility by counting the
number of lines connecting the dots (3 in this case).
Moreover, the plot detects the number of different
mathematical markers using the same connection ratio (3
identified). Since only one copy of a given marker is taken
from a publication (or experiment), 3 or more (23)
connections signal the presence of reproducibility — at the
global level.

Volume: Since biological complexity remainsin-
tactin living subjects, the test was applied first
to MRI data comingfrom patients. The test
data were derived the Internet Brain Volume
Database (IBVD) (Kennedy, etal, 2012).

Reproducibility Test (Volume): The reproduci-
bility test generates whatamounts to a fact pat-
tern—a complex assembly of facts from which
to draw conclusions. Recall that our primary
goal hereis notto duplicate the resultsof a
given experiment, butratherto detectglobal
patternsthat will tell us something about the
basicprinciplesin play. Reproducibility is being
treated as such a principle.

The MRI data set passed the reproducibility test
easily. Noticein Figure 3that the overall pat-
tern consists of many, individual sets of facts
(units), whichin combination provide evidence
for the presence of widespread reproducibility
inthe data setderived from the IBVD. The fig-
ure also shows thata single connection ratio
provides the mathematical hub forseveral dif-
ferent mathematical markers and thatbiology
favors a relatively smallset of connection ratios,
as shown by the frequencies of the linesinthe
blue spindles.

From where does the reproducibility come? It
comes from biology’s ability to maintain the ra-
tios of its parts with a high degree of accuracy.
Mathematical markers detectthisaccuracy by
finding multiple copies of the same patterns dis-
tributed across the literature. Since >40% of
the data set isglobal and reproducible (Table 1),
the argumentfor the existence of accuracy be-
comesa compellingone.

The key pointsto take from Figure 3 include:

1) Agivenconnectionratio (central point) can
accommodate several mathematical mark-
ers (peripheral points) carrying similaror
different scripts.

2) Theplotservesasa reproducibility test
based on specific, quantitative patterns.

3) Such atestcan be applied to most—if not
all— data typesreportedin the biology liter-
ature.



Figure 3 The MRIvolume data of patients produce a wealth of global data as indicated by the many units and the high
concentrations of connections (seen as dense blue spindles) linking mathematical markers to their connection ratios. The
original data set was filtered to to select only those connections that occurred 3 or more times. Note that the figure uses just
2,500 of the 155,891 duplicate markers (23) — Table 1. Since the presence of global data demonstrates the presence of
reproducibility, the MRI data passed the reproducibility test - very convincingly.

Number:Since the previous section with vol-
umes showed that plotting connection ratios
againsttheir mathematical markers gives an ef-
fective testforreproducibility, canitalso be ap-
plied to stereological estimates for cell numbers
and membrane surface areas? Estimates for
cellnumberbased onthe fractionator (Gunder-
son etal., 1988) can be expectedtogive reliable

estimates because the methodis volume inde-
pendent, which meansthatitis free of the vol-
ume related biases associated with estimates
for stereological densities. Moreover, forming
ratios of numerical densities also minimizes the
volume related biases by cancelling out the ref-
erence volumes.

Reproducibility Test (Number): When applied
to the numberdata in the stereology literature



database, the test produced a pattern like the
one displayed previously by volume (Figure 3).
Mathematical markers once again congregated
around a central connectionratioand displayed
the multiple copies consistent with global data

and reproducibility (Figure4). In effect, the cell
counts passed the reproducibility test. Notice,
however, that relativelyfew mathematical
markers (peripheral dots) have more than three
duplicate copies.

Figure 4 When the reproducibility test was applied to the the data set consisting of cell counts (numbers), the pattern consistent
with the presence of global data and reproducibility appeared. Most of the connections, however, contained the minimum
number of connections allowed — just 3. Curiously, only about 1% of the mathematical markers in the data set qualified for the

test (Table 1) —the lowest score to date.

Surface: Surface areas estimated as surface
densities (S/V) with stereological methods are
volume dependent and as such subjecttovol-
ume related distortions. Formingratios, how-
ever, effectively minimizes such distortions
mathematically by cancelling out the offending

reference volumes. Consequently, surface ar-
eas should also provide global datacomparable
to that of the volume independent estimates
for numbers (cell counts; Figure 4). We can test
this assumption by runningthe reproducibility
test.



Reproducibility Test for Surface Areas: When
plotted as mathematical markersvs. connection
ratios, the surface area data also passed the re-
producibility test (Figure 5) —even more con-
vincingly than the one fornumbers (Figure 4).
Notice that many more connections exist be-
tweenthe markers and the connection ratios

for surfacesthan for numbers (compare Figures
4 and 5). Thisoccurred eventhoughthe num-
ber of mathematical markers available forthe
surface area test was only 20% of that used for
the numbers and even less than that (6%) for
volumes (Table 1).

Figure 5 The surface area data (cell organelles) also passed the test, displaying many of the dark blue spindles seen earlier for
the MRIvolume data. Inspite of its relatively smaller size, the surface areas displayed a reproducibility efficiency five times

greater than that seen for the numbers.



The remainder of the reportillustrates that the
reproducibility test can assume many forms. If,
for example, we plot the mathematical markers
for cell organelles against their citation num-
bers, we geta global view of data connectivity —
as it existsinthe stereology literature database
(Figure 6). In the figure, each box containsthe

citation numberof a paper, as indexedinthe
database (now available online). The presence
of the same mathematical markerin multiple
publications demonstrates the global nature of
the stereology literature. Ineffect, accuracy
and reproducibility characterize both biology
and the biology literature.

(MmN e plemamemiranet

Figure 6 When surface areas of organelles coming from a wide variety of cell types and species (frogs to humans) are expressed
as mathematical markers, related to their citation numbers (boxed), and plotted, global patterns in the stereology literature
become apparent. Such patterns indicate that reproducibility and accuracy are widespread.

The Role of Connectivity

Why is connectivity soimportantto biology? It
connectsits parts by rule toform complexities,
as a way of optimizing those outcomes that en-
sure its success and survival. Ourcurrent strat-
egy consists of tappinginto these biological
complexities by connecting snippets of these
rulesintoinformative patterns. We can do this
because recentadvancesintechnology allow us
to assemble andinterpret large datasets and
patterns.

Figures 3, 4, and 5 indicate that biology rou-
tinely favors some connection ratios over oth-
ers, at leastfor volumes, numbers, and surfaces
(see also Bolender, 2006, 2010). Recall that
these figuresindicate thatagiven connection
ratio (central point) can accommodate both
similar (multiple blue lines) and different math-
ematical markers (multiple peripheral points).

An immediate consequence of comparing con-
nection ratios to mathematical markers is that it



raises fundamental questions about the rela-
tionship of parts to connections. Although we
can be reasonably confident that DNA codes for
both parts and connections, we don’t know if
they are being controlled together orsepa-
rately. If, for example, biologyis controllingits
parts and connections separately, then disor-
ders— or for that matterany type of phenotypic
change —issubjectto at leasttwo levels of
oversight. This meansthatdisorders of the
brain, for example, could be explained by ab-
normal parts, abnormal connections, orsome
combination of the two. Consequently, know-
ingwhat’sin play becomes critical to interpret-
ingresults and pursuing solutions.

Seeingthe Big Picture: Since both mathematical
markers and theirconnection ratios represent
universal datatypes, we can use themto sum-
marize large and otherwise heterogeneous data
sets. Figure 7, for example, showsthatthe
combined datasetfor volumes, numbers, and
surfaces—expressed as connection ratios —are
highlyinterconnected. Such a pattern suggests
that different datatypes are sharing similar
rules of organization.

Volume

Figure 7 Although the volumes, surfaces, and numbers of
parts represent distinctly different data types in terms of

what they measure, their connection ratios show extensive

connectivity. In effect, different data types can share the
same rules.

If, instead, we plotthe connection ratios of Fig-
ure 7 against species, the three datatypes(V, S,
N) continue to display extensive connectivity
(Figure 8). Note that the animalsinthe figure
are grouped accordingto the similarity of their
connections—an analytical feature of the Com-
munityGraphPlot (Mathematica 11).

Guinea Pig
Monkey

Figure 8 Even afterthe connection ratios of the volume,
surface, and number databases were combined and
plotted against species, the connectivity remained. Recall
that these data came from parts ranging in size from
organs to organelles, responding to a wide range of
experimental conditions, and carrying different
methodological biases. In effect, connectivity appears to
be a major unifying principle in living systems.

If, for example, we lookjust atthe surface areas
of cell organelles distributed across the animal
kingdom, we can see the extentto which con-
nectivity operates as a fundamental principle of
biological systems (Figure 9). Itappearsthat all
the speciesincludedinthe plot are playing by
the same set of connectivity rules.



Figure 9 When organelle surface areas are plotted against
connection ratios, they form seven clusters - all of which
are highly interconnected.

We can also look at data from a single paper
and compare the connectivity of mathematical
markers to those of connection ratios. This tells
us something about the relationship of one cell
to anotherinsame tissue. Consider, forexam-
ple, hepatocytes, fat storing cells, endothelial
cells, and Kupffercells of the ratliver. When we
plot the mathematical markers forthe surface
areas of cell organelles against the cell types,
we find that all the cells share some of the same
markers (Figure 10).

Hepatocyte Kupffer Cell

Fat Storing Cell Endothelial Cell

Figure 10 In the rat liver (Adapted from Blouinetal., 1977
[977]), hepatocytes, fat-storing cells, Kupffer cells, and

endothelial cells display both unique and shared
mathematical markers. Notice how each cell connects to
the other three.

If, however, we replace the mathematical mark-
ers of Figure 10 withtheirequivalent connec-
tionratios (Figure 11), the number of cell to cell
connectionsincreases dramatically. The figure
suggests that the design of a given cell appears
to include two distinct subpopulations of con-
nection ratios—one shared and the other not
shared. In effect, the genetic programming of
cell organelles can be detected phenotypically
by the presence (orabsence) of specificmathe-
matical markers and connectionratios. Suchin-
formation may prove helpful in understanding
the fundamentals of differentiation or in ex-
plaininghow a cell can change its phenotype.

Fat Storing Cell

Hepatocyte

Endothelial
Cell

Kupffer Cell

Figure 11 When the mathematical markers of Figure 10
are replaced by their connection ratios, connectivity
between the cells increases markedly. Notice how tightly
the cells are interconnected phenotypically.

When we replace the dots shownin Figure 11
with the names of the cells and connection ra-

tios (Figure 12), specificconnections can be
identified.



Figure 12 Names and locations of the cells and
connections summarize the complexity of the relationship
of one cell type to another in the rat liver. Enlarge image
as needed.

To view cell to cell connectivity at a global level,
we can plotthe organelle surfaces of all the cell
typesinthe stereology database against their
mathematical markers (Figure 13). Once again,
we find a similar pattern of shared markers.
Since the differentiated cells of agiven animal
derive from the same source (zygote) and dif-
ferentanimals share many of the same genes,
thisis exactly the pattern we would expectto
see.

huptiorcell

Y.

acinarcel loydncet

epitholum

endotheliakell stratedductcel

tercalatedductcel

epaneliakel

Figure 13 Extensive sharing of mathematical markers —
derived from the surface areas of cell organelles - occurs
within and across animal species.
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If we take the same set of mathematical mark-
ersshownin Figure 13 but substitute the cita-
tion numbersforthe cell types, we geta global
view of cell to cell connectivity asitexistsin the
biology literature (Figure 14).

Figure 14 One way of testing for reproducibility consists of
plotting the mathematical markers of cells against their
citation numbers. The plot demonstrates the global nature
(read reproducibility) of published data. Recall that the
mathematical markers being used here include
alphanumeric strings containing six variables — making it a
tough test to pass.

Finally, if we replace the mathematical markers
of Figure 14 with their connectionratios (Figure
15), the resulting view of the literature reveals
an underlying global pattern of remarkable con-
nectivity and reproducibility.

Figure 15 The plot displays the relationship between
citations and connection ratios, which were derived from
the surface areas of cell oranelles. Itillustrates the
presence of widespread connectivity within the stereology
literature.



In summary, we can draw the following conclu-
sions. By equatingthe existence of global data
to that of reproducibility, it now appears that
the biomedical literature contains far more re-
producible results than we previously thought.
The pointto take from these examplesis that
we can readily find reproducibility throughout
the literature, once we know where and how to
look forit.

The Highly Adaptive Brain

Although earlierreports have explored the rela-
tionship of mathematical markerstodisorders
of the brain (Bolender, 2011-2015), our purpose
hereisto upgrade the topicby adding the new
results coming from the connections ratios.

In spite of knowing many of the detailed mech-
anisms by which biological parts are produced,
we still know surprisingly littleabout the quanti-
tative relationship of partsto their connections.
It now appearsthat a deeperunderstanding of
this relationship willbe fundamental to our un-
derstanding of biology and of the disease pro-
cess.

Volumes: When, forexample, we plot connec-
tionratios against 24 disorders of the brain, the
picture that emerged fromthe MRl data set
(1BVD) was one of intense connectivity (Figure
16). The plotdemonstratsthe extenttowhich
different disorders share acommon connectiv-
ity platform.

12

Figure 16 Connection ratios derived from a panel of 24
disorders of the human brain display four clusters all of
which are interconnected. This MRIdata set —derived
from the IBVD - indicates that disorders share many of the
same connection ratios. The clusters group disorders
according to their affinities: A (Alzheimer, Williams-syn-
drome), B (adhd, Aspergers-syndrome, Huntington-dis-
ease), C (alcohol, autism, borderline-personality-disorder,
Down-syndrome, dyslexia, epilepsy, fragile x, Klinefelter-
syndrome, major-depressive-disorder, ocd, ptsd), and D (bi-
polar, panic-disorder, schizophrenia, velocardiofacial).

We can beginto understand the complexity of
the disorders puzzle by plottingthe connection
ratios of normal patients (C) against those pre-
senting with disorders (E). The resultsin Figure
17 show two sets of unique connection ratios
(C,E) separated by a shared set (E=C). The ex-
tent of the sharing seen at the global levelwas
unexpected because duplicate copies of the
mathematical markers (E=Eand C=E) were re-
moved from the individual papers —before their
connectionratios were plotted. Since ashared
category exists (C=E), itappears that a given
connectionratio can supporteitheranormal or
abnormal complement of parts. However, the
key pointto take from the figure is that distinct
populations of connection ratios exist for both
normal and abnormal brains (Figure 17). From
this, itappears that connectivity is either con-
tributing tothe disease process or being pro-
duced by it. Whateverthe case may be, the an-
swer presumably originates somewhere in our
DNA. But, where?
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Figure 17 Whenthe MRl data of the IBVD are translated into connection ratios for control (C) and experimental (E) patients and
plotted, they form three distinct groups of connection ratios — abnormal (E), shared (E=C), and normal (C). Notice that once

again we find a large number of connection ratios in play.

Next, we can burrow into the data setshownin
Figure 17 to tease out some of the details asso-
ciated with the connectivity patterns. If, forex-
ample, we take two MRI publications on schizo-
phrenia (citations 652 and 5165) and plotthe
parts estimated therein against theircitation
numbers, we find thatthe papers have onlya
single partin common - the temporal lobe (Fig-
ure 18). Givensucha result, itwould seem logi-
cal to conclude that the data of the two papers
have very little incommon. Infact, thisturned
out notto be the case.
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Figure 18 Whenthe names of the parts published in two
different papers on schizophrenia are plotted against their
citation numbers, only only 1 of the 61 parts is shared by
both papers (temporal lobe). Original data attributed to
Swayze etal., 1992 [652] and Goldsteinetal., 1999 [5165].



When we convertthe volume data of these two
papers (652 and 5165) into connection ratios
and plotthem against their citation numbers,
notice what happens. Now, we find widespread
connectivity. Almostall the connectionratios
(97%) in publication 652 duplicate those in 5165
(Figure 19). Such a resultsuggeststhat schizo-
phreniaisredefining the connectivity of brain
parts in a way apparently unrelated tothe iden-
tities of the individual parts. Ineffect, the fun-
damental cause of schizophrenia might be ex-
plained entirely orin part by the presence of
abnormal connectivity ratios.

Figure 19 Publications 652 and 5165 share almost
identical connection ratios, even when the parts of the two
data sets are almost entirely different. Such a finding
suggests that schizophrenia is instigating major changes in
connectivity patterns throughout the human brain. If true,
then schizophrenia may be interfering with the design rules
at a deeper level, perhaps resetting a major portion of the
biology blueprint.

Thisraisesthe possibility yet again that schizo-
phrenia—as well as otherdisorders of the brain
— have theirrootsin both parts and connec-
tions. Ifthisis the case, then attemptingto

solve disorders such as schizophrenia using just
the data of parts may prove to be unproductive.
Once again, we seemto be remined that com-

plex problems require equally complex solu-
tions.

Numbers: Cell counts (numbers) associated
with schizophrenia displayed a pattern similar
to the onejustdescribed forvolumes. The plot
of partsvs. citation numbers alsoincluded asin-
gle match, which, inthis case, was the medial
dorsal nucleus (Figure 20). If, as before, we re-
place the names of the parts with their connec-
tionratios, a similar burst of connectivity results
(Figure 21).

3172

2327
3N
~ 3489

Figure 20 Forthose papers characterizing schizophrenia
with cell counts (numbers) and mathematical markers,
only two (3039 and 5010) shared the same part (medial
dorsal nucleus).

Figure 21 When the citation numbers of the papers listed
in Figure 20 were plotted against their connection ratios, a
pattern of widespread connectivity appeared.



The pattern persists forspecies. Whenwe look
for patternsin cell counts (control and experi-
mental) across different animals, only humans
and rats share the same mathematical markers
(Figure 22). Incontrast, Figure 23 shows that
connectionratios casta far widernet.

occipitaliobetfrontaliobe1.5parietaliobel occipitaliobe1frontaliobe1.5temporaliobe

rat

human

temporaliobettrontaliobe1.5parietaliobe1 occipitaliobe 1parietaliobe frontaliobe1.§

Figure 22 When mathematical markers derived from cell
counts are plotted against species, only humans and rats
shared the same markers.

Figure 23 When, however, the connection ratios replace
the mathematical markers, many more animals became
connected by sharing similar patterns. Note that of the to-
tal number of connection ratios (108,824), 1,236 occurred
at least three times. The distribution included: human
(396), monkey (38), mouse (24), rabbit (72), rat (704), and
shrew (2).
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DISCUSSION

Findingasolutiontothe reproducibility prob-
lemrequired the use of patterns. Incomplex
settings, such as biology, only patterns seem ca-
pable of accessing the deeperlevels of infor-
mation needed to address fundamental ques-
tions. By managingreproducibility effectively,
we can now enjoy the advantage of having both
accuracy and precisioninplay. The test, which
found reproducibility to exist across all the data
sets considered (Figures 1-23), demonstrated
that the biology literature can be a rich source
of reliableinformation.

This global reach of patterns standsinsharp
contrast to our currentapproach to reproduci-
bility inthe life sciences, which consists largely
of duplicating the data points of a single experi-
ment. Althoughincreasing precision canim-
prove reproducibility locally, advanced players
are likely to preferaccuracy because of itsrela-
tionship tofirstprinciples. Besides, findingan
accuracy-based solution to the reproducibility
problem required little more than noticing that
biology expressesits reproducibility principle as
ratios of its parts. Of course, the genius of biol-
ogy isclearlyinplayinthat it usesthese ratios
to letaccuracy and precision converge —pro-
ducing the best possible solution.

Arguably, playing the complexity game with bi-
ology requiresrethinking almost everything we
do. Nottakingthe leapintocomplexity, how-
ever, appears to be even more daunting. Our
chronicinability to solve the reproducibility
problem serves as a stark reminder of the limi-
tations beingimposed on ourscience by agriev-
ously outdated theory structure. To make mat-
tersworse, our statistical allies are now taking
us to task over the inadequacies of ourresearch
data (loannidis, 2005; Van Regenmortel, 2004),
our fundingis ona downward spiral (NIHRe-



search Funding Trends, Nature Cell Biology Edi-
torial, 2012), we continue to be cut off from our
published data by paywalls (Murphy, 2016), and
our results are chronically opento criticism (The
Economist, 2016). Therecentarticlein Nature
(Baker, 2016) aptly calls our current state a cri-
sis, but our problems go far deeperthan just
precision. We find ourselvesin trouble because
we are failingto run our science ina way con-
sistent with the principles of the living systems
we are tryingto understand.

If we look at reproducibility from biology’s per-
spective, its solution to the problem illustrates
how it deals with complexity. To maintainits
status as a living system, it must enforce strict
rules of reproducibility toinsure the existence
of its emergent properties (e.g., life, cognition,
survival). Atthe same time, however, it must
allow its partsto change in response to those
forces withinand beyond its control. In effect,
using ratios to maintain orderinstead of focus-
ingon justindividual partsrepresentsaclever
solution, one that obviously works quite well.

Reproducibility Repackaged

Our current willingness to base our definition of
reproducibility on precision (Baker, 2016),
comeswith more than a few drawbacks. We
can flesh out some of these negatives by asking
simple, but thought-provoking questions.

Considerthe standard definition of reproduci-
bility given at the outset: “Reproducibility is de-
fined as an ability to duplicate the results of an
experiment either by the same researcheror by
anindependentone.” If we express this defini-
tion as an expression, we would expectitto
contain a variable thatacts like a constant. To
wit:

= Pi(experiment n), (1)

Pi (experiment 1) = Pi(experiment 2) e
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where P is a data point characterizing some part
i.

Let’slook at a published datasettoseeif equa-
tion 1 givesuswhatwe want. If, for example,
we select estimates forthe amygdalafromthe
IBVDand plotthem, we find a widely-dispersed
cloud of data points (Figure 24), illustrating the
variation we have come to expect from biology.
If we duplicate any one of these points —in
keepingwith the logicof equation 1- will we

satisfy the reproducibility requirement? In
keepingwith the definition above, yes.
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Figure 24 A plot of 58 estimates for the volume of the
amygdala produces a cloud of data points (IBVD). Note
that each data point represents the average of several pa-
tients.

Hereinliesthe problem. Everypointwe
choose to duplicate represents alocal solution,
which satisfies the precision part of the repro-
ducibility definition, butignores the more im-
portantrole of accuracy (correctness). Suchan
arrangement triggers dicey questions. Does this
mean that by duplicating an experimental out-
come we can considerthe outcome to be cor-
rect—evenifitisincorrect (precise, butinaccu-
rate)? If an experiment cannotbe duplicated,
doesitmeanthat the original results were
wrong? Can one answersuch contradictory
questions convincingly? Most likely, no.



Since estimates forthe amygdalaproduceda
cloud of scattered data points (Figure 24), does
this mean that an accurate estimate isimpossi-
ble because of biological variation and experi-
mental biases? Suchanirritating question be-
comesinescapable when we use the precision
argumentto define reproducibility. Toavoid
havingto answer such unanswerable questions,
the report substituted a definition forreproduc-
ibility based onaccuracy. This put the onus of
havingto defendthe results on biology and its
logical surrogate - the biology literature (Figures
3-5).

The strategy behind takingan accuracy-based
approach to reproducibility, of course, requires
asking seemingly unanswerable questions with
the knowledge that biology already knows the
answers. How can this be demonstrated? Con-
siderthe followingexample. If the amygdalais
subjectto biology’s accuracy rule, isit possible
to show that the 58 points displayedin Figure
24 were generated accurately —despite their
scattereddistribution? The answer, of course,
isyes- if we know how biology appliesits accu-
racy rule.

Let’s start with the target analogy often used to
explainaccuracy and precision. Recall thatac-
curacy can be likened to aset of data points
(hits) all of which clusterin the centerof the
bullseye. Clearly, thisis notthe casein Figure
24. Accordingly, mostreasonable people would
conclude that biology ignores accuracy wheniit
produces an amygdala. Biology, however,
would strongly disagree. If we look atthe set of
points shownin Figure 24 through biology’s
eyes, the amygdalawould appearasa single
point (Figure 25). Why? Because biology puts
itsaccuracy where it works best for biology.
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Figure 25 When the left and right sides of the amygdala
are expressed as 58 ratios, the scatter plot shown in Figure
24 is replaced by a single point (a decimal ratio value). No-
tice that such a point becomes a measure of both accuracy
and precision. Adapted from Bolender, 2012; see reference
for details).

What does thismean? Biology defines accuracy
inthe amygdalanotinterms of a single volume,
but ratheras the ratio of two volumes - left to
right (0.4:0.5). Biology knows how to haveitall
(Figure 25) —accuracy (all 58 pairs of points are
the same) and precision (all the points are su-
perimposed).

Reproducibility Tested

The reproducibility test provides two new capa-
bilities. Itgivesusa single testthatcan be ap-
pliedtoa wide range of data types (Figures 3-5)
and itsuppliesthe global dataneeded to opti-
mize both precision and accuracy (Figures 1-25).
By equating reproducibility to global data, we
can define the phenotype asacontinuous,
guantitative platform extending from MRI (vol-
umes) to light microscopy (cell counts) toelec-
tron microscopy (surface areas) to molecular as-
says (optical densities). The designof sucha
platform - defensible by quantitative arguments
- simplifies ourtask of making the transitionin



our approach to biology from simple to com-
plex.

The reproducibility test was designed to make it
extremely difficult to pass. Triplet markers con-
sisting of six variables had to appearas dupli-
cates inat leastthree different papers - orsepa-
rate studies - to qualify. Nonetheless, the data-
bases demonstrated repeatedly that the biology
literature can meetand exceed this minimum
requirement routinely (Figures 3-5, Figure 26).
Consider, forexample, the results shownin Fig-
ure 26. It would be impossibleforthisimage to
appearunless biology and the biology literature
were onthe same page.

Figure 26 The pattern illustrates biology’s rule-based ap-
proach to managing reproducibility. When MRI data are
plotted, mathematical markers form such rosettes (repro-
ducibility units) centered on unique connection ratios.
Since many repeats (blue lines) can be seen for the periph-
eral points (mathematical markers), we can now imagine
that both biology and the biology literature are remarkably
good at using complex patterns to oversee accuracy. See
Figure 2 for labels.

The big winto come from the reproducibility
test, however, was the appearance of global
patterns formembrane surface areas - esti-
mated stereologically with electron microscopy
(Figures 9-15). Since biological membranes sup-
ply the structural platform for constitutive
markerenzymes, they should allow usto com-
plete akey part of the biology puzzle - aquanti-
tative phenotype extending all the way from or-
ganismsto molecules.
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Such a phenotype will have diagnosticand pre-
dictive properties and can be stored as a rela-
tional database with unlimited entry and exit
points.

Summary: Reproducibility Test

e The reproducibility test consists of plotting mathemati-
cal markers against their connection ratios.

e |t tests for the presence of global data, which serves as
a measure of reproducibility.

e Reproducibility comes from global patterns that come
from biological accuracy.

e |tisassumedthat global data are present when three
or more duplicate copies (mathematical markers) exist
for a given connection ratio.

e The reproducibility test identifies MRI data collected
from patients as its gold standard.

Connectivity Generates Patterns

Global connectivity can be shownto existin the
biology literature when data are expressed as
mathematical markers and connectionratios.
In living system:s, itappears that change, diag-
nosis-prediction, disorders of the brain, and
now reproducibility all derive their global prop-
ertieslargely fromthe connectivity of parts
(Bolender, 2012-2015).

The connection ratios, which are defined herein
as alphanumericstrings (partX:partY:part2),
representanew data type. Theyformdistinct
patterns, exist eitheras unique orshared
strings, and define quantitatively afundamental
property of biology.

Moreover, a given connection ratio embedded
ina mathematical marker can be repopulated
with different parts oralternate between
steady and transitional states during the phases
of a change (Bolender, 2016; Figure 1.11). In
otherwords, biology can hold connections con-
stant and change the parts or hold parts con-
stant and change the connections. Detecting
such events would appearto be essentialto un-
derstandingthe complexity of a biological



change. As we discovered earlier with ratios,
valences, and mathematical markers, connec-
tion ratios offerdeeperinsightsintothe inner
workings of biology.

We are beginningto understand that some of
the best questions are those that seem at first
impossible toanswer. If, forexample, connec-
tionratiosidentify rule-based patterns common
to living systems, where do such rules come
fromand how does biology know when and
where toapply them? What factors, for exam-
ple, influence biology to select normal orabnor-
mal connection ratios (Figures 16-21)? To an-
swersuch questions, two possibilities come to
mind. Some design principles might be ex-
plained by self-assembly, whereas others may
be the result of algorithms scripted in DNA. If
such scripts exist, how does one find and inter-
pretthem? When we change the coding of our
DNA, how will this affect our global patterns?

Summary: Connectivity

e Connections represent one of two major components
fundamental to biology as a complex system — parts
(amount, composition) and connections (ratios).

e Connectivity can be identified as the major source of
global data, reproducibility, and accuracy in living sys-
tems.

e Connection ratios represent a new data type, largely
unexplored.

e Connection data account for a substantial portion of
the quantitative information coming to us from biol-
ogy.

Disorders Reorder

Disorders of the brain can be studied using
parts (volume, surface, length, and number),
connections (connection ratios), and acombina-
tion of the two (mathematical markers). Prob-
lems arise, however, inthateach option, which
defines adistinct data platform, canlead to dif-
ferent outcomes with differentinterpretations.

Moreover, even bigger problems arise whenwe
collectdatafrom one platformand thentry to
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interpretitonanother. In fact, our current
practice of routinely switching between plat-
forms helpsto explain why the biology litera-
ture can be so contradictory. Consider, forex-
ample, our standard experimental method. We
simplify biologyby selecting afew parts, quan-
tifythem, and then try to explain how and why
they behave as they do ina complex biological
setting - knowinglittleabout the behavior of
the complexity. A change, when taken out of
context, isinterpreted out of context. Itbe-
comes disconnected from the reality of biology.

If, instead, we start with simple data, translate
theminto complex patterns, and then use the
patternsto solve acomplex problem, we usu-
ally getwhat we want (e.g., a reproducibility
testbased on accuracy). Since thisapproachto
problemsolving generates new discovery plat-
forms, we can use themto explore new solu-
tions to other problems.

Considerdisorders of the human brain. After
extracting connection ratios from their mathe-
matical markers and then plottingall 24 disor-
ders as a single group, widespread connectivity
appeared withinand across MRI publications
(Figure 16). When, inturn, control data were
addedto the data set of Figure 16, three unique
clusters of data appeared - abnormal (E), shared
(E=C), and normal (C) (Figure 17). Thisresult
shows that disorders of the brain define adis-
tinct population of abnormal connectionratios,
which insome way are the resultof an un-
known process capable of modifying ratios. The
presence of such a large population of abnor-
mal ratios (E) highlights the magnitude of the
problem. However, we are presented with yet
anotherlayerof complexity by the shared clus-
ter, where C=E. The same connectionratiocan
be populated with either normal or abnormal
parts. Such a population becomes aready
source of false positives.

A curious pattern appeared repeatedly in Fig-
ures 16 to 21. Thedisordersseemtodepend



more on the connectivity of the parts (ratios)
than onthe parts themselves (numerical val-
ues). Thissuggeststhat solvingthe disorders
puzzle —eitherindividually orasa group — will
require afar better understanding of the biolog-
ical principles underlying connectivity.

Summary: Disorders of the Brain

e Disorders of the brain define a unique set of connection
ratios.

e Connection ratios can define the relationship of one
disorder to another quantitatively.
e Connection ratios can become false positives.

Concluding Comments

If we define reproducibility as an ability to du-
plicate the results of an experiment, but have
little successindoingso, then the simplestsolu-
tionisto change the definition. Such wasthe
strategy pursuedin thisreport.

Reproducibility was redefined as the ability of
biology (oran observer) to duplicate complex
patternsglobally. Inturn, the reportdeter-

mined the effectiveness of this revised defini-
tion by testing three different datasets forthe
presence of global data (Figures 1-23). The re-
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