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Since biology as a science continues to struggle with the problem of reproducibil-

ity, many now believe that every effort should be made to increase the precision 

of our estimates.  Although a worthwhile goal, others might argue that precision 

in science is a poor substitute for accuracy.  To avoid taking sides, the report uses 

a reproducibility test to discover where the precision and accuracy of biology can 

exist together in our published data.  The advantage of such an approach to prob-

lem solving is that it requires little more than figuring out where and how to look.     
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SUMMARY 
 
Our current test for reproducibility in the life sciences relies largely on local precision, namely duplicat-
ing the results of a given experiment.  In contrast, biology seems to need two rules to fulfill its reproduc-
ibility requirements.  The size of a given part is under local rules (precision), whereas the relationship of 
one part to another follows global rules (accuracy).  In this report, we will attempt to tap into these rules 
of biology with the goal of constructing a reproducibility test based on accuracy.  Since any given species 
includes many similar copies, we already know that biology is very good at playing the accuracy game 
globally.  This simplifies our task considerably by reducing it to an exercise in finding these global pat-
terns in the biology literature.  Moreover, such patterns would offer empirical evidence for the existence 
of design principles basic to reproducibility.  To assemble a reproducibility test, published data from 
more than a thousand papers were translated into triplets and expressed as mathematical markers and 
connection ratios.  When mathematical markers were plotted against their connection ratios and 
viewed graphically, global patterns consistent with both accuracy and precision appeared in surprisingly 
large numbers.  These patterns were found in the MRI data (volumes) of a single species (human) and in 
stereological data (numbers and surfaces) encompassing many species.  In short, all the data sets exam-
ined demonstrated the ability to pass a reproducibility test based on accuracy.  Such results suggest that 
the biology literature contains data far more accurate than our traditional precision-centric tests are 
telling us.  The test databases also detected the presence of global patterns within and between orga-
nelles, cells, species, exposures, and disorders.  Although such an outcome was unanticipated, this is ex-
actly the overarching pattern we should be finding throughout the biology literature.  In addition to 
many animal species sharing considerable portions of their genomes, it would now appear that DNA 
sharing applies not only to genes coding for proteins, but also to the yet unidentified sequences or other 
devices coding for the design principles responsible for phenotypic patterns.  If this proves to be the 
case, then prediction to and from DNA becomes a reasonable goal.  Since only about 3% of our DNA is 
allocated to genes coding for proteins, it seems likely that the larger part of the DNA story (97%) will be 
about the roles being played by these intergenic sequences in designing and controlling phenotypes.  
The report also considers how this expanded view of DNA might influence the way we study the human 
brain.  By identifying extensive populations of abnormal phenotypic patterns in brains displaying disor-
ders, literature databases might speed the task of figuring out what parts of the DNA need repairing – 
genetic, intergenic, or both.  Here our goal would be to create a quantitative link between the pheno-
type and its DNA, wherein extensive data interactions become an essential part of the problem-solving 
process.  A final note.  The reports and resources previously distributed on DVD to contributing authors 
will now be published online at playingcomplexitygames.com.   
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INTRODUCTION 
 

Reproducibility is defined as an ability to dupli-

cate the results of an experiment either by the 

same researcher or by an independent one.  De-

fined as such, it appears to be more a measure 

of precision (repeating the same result), than of 

accuracy (correctness).  Herein lies a problem.  

To be valid, a measurement system requires 
both precision and accuracy.    

Reproducibility continues to be the Achille ’s 

heel of our scientific community (Collins and 

Tabak (2014), Begley and Ioannidis (2015), 

Freedman et. al (2015), Roth and Cox (2015), 

Engber (2016)).  Nature (Baker, 2016), for exam-

ple, recently used a questionnaire to highlight 

the consensus view that a reproducibility crisis 

currently exists in science.  After reading Na-

ture’s questionnaire and viewing the recom-

mendations of the Biophysical Journal (2015), 

however, one is led to believe that improving 

reproducibility will result in a higher quality of 

science.  Since many of the improvements being 

suggested deal largely with precision, such a 

prognosis might be overly optimistic.  Recall 

that a precise estimate can be either correct or 
incorrect.  This is an indisputable fact.   

Given this widely understood limitation of preci-

sion, why not base our definition of reproduci-

bility on accuracy?  But how can we expect to 

demonstrate accuracy with biological data 

when we’re currently having such a hard time 

with precision?  All we need are a few basic 

questions to get us started.  Does reproducibil-

ity exist in biology?  Yes, biology reproduces – 

very effectively – vast numbers of animals that 

we identify as belonging to distinct species.  

Moreover, reproducibility is fundamental to all 

parts of biology because to have emergent 

properties (e.g., life, thoughts, success, survival) 

it must connect these parts to form highly spe-

cific, predictable, and adaptable patterns.  If 

true, then one can argue that biology must be 

taking the high road – the accuracy approach to 

reproducibility.  Any proof?  Yes.  Is biology suf-

fering from a reproducibility crisis?  No.   

Is it possible to assemble a robust test for re-

producibility - based on a strategy similar to the 

one biology uses?  What – exactly - is biology’s 

strategy?  When faced with a complex problem, 

biology can bring at least three key players into 

the game - parts, connections, and complexity.  

Can we do the same?  What would it take?   

To be convincing, we would need to make our 

reproducibility test much harder to pass than 

the one described in Nature (Baker, 2016).  In-

stead of limiting the definition of reproducibility 

to that of a single study, we would have to ex-

pand it to include all applicable studies stored in 

our biology literature databases.  Notice that by 

moving the definition from local to global, we 

automatically shift the focus of the test from 

precision to accuracy.  Moreover, by replacing 

the simple variable (data point) with a complex 

one (triplet mathematical marker), six variables 

– not just one – must be duplicated not just 

once, but three or more times across the litera-

ture.  Notice the strategy in play.  By making the 

test impossible to pass unless biology allows it, 

we leave ourselves little choice but to accede to 

biology’s definition of reproducibility, which in-

cludes accuracy.  Besides, deferring to biology 

tends to inspire confidence.  It already knows 
how to solve the most difficult problems.    

 

METHODS AND RESULTS 
 

The Enterprise Biology Package 

In collaboration with the community, the Enter-

prise Biology Software Project transforms pub-

lished research data into patterns capable of 
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addressing and solving a wide range of complex 

problems in biology (enterprisebiology.com).  A 

yearly progress report includes databases, files, 

and directions for repeating the current results 

(Figure 1).  This year, a worked example of the 

reproducibility test described herein is being 

distributed online (playingcomplexityg-

ames.com).  It introduces the reader to the pro-

cess of solving complex problems with data-
bases.                

 

Figure 1  The package includes the yearly report accompa-

nied by worked examples, databases, et cetera. 

 

The Reproducibility Test 

The reproducibility test requires a new data 

type called the connection ratio.  Defined as an 

alphanumeric string, it consists of a triplet 

mathematical marker (AX:BY:CZ) with the 

names of its parts (A, B, C) all changed to the 

same name (Part): (PartX:PartY:PartZ).  As such, 

only the values of the ratio (X:Y:Z) are in play.  

The renaming operation is done in Excel and 

can be duplicated by downloading one of the 
files described in Appendix I.   

Table 1 summarizes the volume, number, and 

surface databases used in the report.  The vol-

ume (V) data were derived from the Internet 

Brain Volume Database (IBVD) (Kennedy et.al 

2012), whereas the number (N) and surface 

area (S) data came from the stereology litera-

ture database (Bolender, 2001-2016).  Notice 

that the MRI data represented the most effi-

cient source of global information (41.6%), 

whereas cell counts (N) the least (1.1%).   At 

5.7%, surface areas had an efficiency rating 

roughly five times greater than the one for 
number – even with its smaller sample size. 

Table 1 The table summarizes the sample sizes used for the 
reproducibility tests. Note that the volume-based plot dis-

played in Figure 3 used only 2,500 of the 155,891 dupli-
cate markers (≥3). Abbreviations include MRI (magnetic 
resonance imaging), LM (light microscopy), and TEM 

(transmission electron microscopy).       

Data Types → Volume Num-

ber 

Sur-

face 
Data Sources→ MRI LM TEM 

Mathematical Markers 374,906 108,824 21,402 
Dupl icates (≥3) 155,891 1,236 1,221 

Efficiency (Reproduci-
bi l ity) 

41.6% 1.1% 5.7% 

 

 

Global Data ⇒ Reproducibility ⇒ Accuracy 

When working under the aegis of complexity 

theory, the focus invariably shifts from local to 

global.  Both mathematical markers and con-

nection ratios signal the presence of global data 

when the same string occurs repeatedly.  For 

our purposes here, global data will serve as the 
measure of reproducibility. 

Design of the Test: The reproducibility test uses 

the CommunityGraphPlot of Mathematica 11 

(Wolfram) to display the relationship of mathe-

matical markers to connection ratios (Figure 2).  

The results are expressed as a collection of 

units, wherein a measure of accuracy (a mathe-

matical marker) is duplicated as a measure of 

reproducibility.  In each unit, the number of du-

plicate markers is equal to the number of lines 

connecting a mathematical marker to its con-

nection ratio.  The strength of the test depends 

on the number of connecting lines (forming 

blue spindles) and the total number of units in 
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play.  The number of different mathematical 

markers associated with a given connection ra-

tio is a measure of the preference given to that 

ratio by biology.  To pass the test, reproducibil-
ity must exist within and across many units.        

 

 

Figure 2  Reproducibility can be expressed quantitatively as 
a unit of complexity, one that displays a highly specific 

pattern.  By plotting mathematical markers (peripheral 
dots) against their connection ratios (central dot), we can 
test for the presence of reproducibility by counting the 

number of lines connecting the dots (3 in this case).  
Moreover, the plot detects the number of different 

mathematical markers using the same connection ratio (3 
identified).  Since only one copy of a given marker is taken 
from a publication (or experiment), 3 or more (≥3) 

connections signal the presence of reproducibility – at the 
global level.        

Volume: Since biological complexity remains in-

tact in living subjects, the test was applied first 

to MRI data coming from patients.  The test 

data were derived the Internet Brain Volume 
Database (IBVD) (Kennedy, et al, 2012).  

Reproducibility Test (Volume): The reproduci-

bility test generates what amounts to a fact pat-

tern – a complex assembly of facts from which 

to draw conclusions.  Recall that our primary 

goal here is not to duplicate the results of a 

given experiment, but rather to detect global 

patterns that will tell us something about the 

basic principles in play.  Reproducibility is being 

treated as such a principle.     

The MRI data set passed the reproducibility test 

easily.  Notice in Figure 3 that the overall pat-

tern consists of many, individual sets of facts 

(units), which in combination provide evidence 

for the presence of widespread reproducibility 

in the data set derived from the IBVD.  The fig-

ure also shows that a single connection ratio 

provides the mathematical hub for several dif-

ferent mathematical markers and that biology 

favors a relatively small set of connection ratios, 

as shown by the frequencies of the lines in the 
blue spindles.  

From where does the reproducibility come?  It 

comes from biology’s ability to maintain the ra-

tios of its parts with a high degree of accuracy.  

Mathematical markers detect this accuracy by 

finding multiple copies of the same patterns dis-

tributed across the literature.  Since >40% of 

the data set is global and reproducible (Table 1), 

the argument for the existence of accuracy be-

comes a compelling one.    

The key points to take from Figure 3 include:  

1) A given connection ratio (central point) can 

accommodate several mathematical mark-

ers (peripheral points) carrying similar or 

different scripts.  

2) The plot serves as a reproducibility test 

based on specific, quantitative patterns.  

3) Such a test can be applied to most – if not 

all – data types reported in the biology liter-
ature.       
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Figure 3   The MRI volume data of patients produce a wealth of global data as indicated by the many units and the high 

concentrations of connections (seen as dense blue spindles) linking mathematical markers to their connection ratios.  The 
original data set was filtered to to select only those connections that occurred 3 or more times.  Note that the figure uses just 

2,500 of the 155,891 duplicate markers (≥3) – Table 1.  Since the presence of global data demonstrates the presence of 
reproducibility, the MRI data passed the reproducibility test - very convincingly. 

Number: Since the previous section with vol-

umes showed that plotting connection ratios 

against their mathematical markers gives an ef-

fective test for reproducibility, can it also be ap-

plied to stereological estimates for cell numbers 

and membrane surface areas?  Estimates for 

cell number based on the fractionator (Gunder-

son et al., 1988) can be expected to give reliable 

estimates because the method is volume inde-

pendent, which means that it is free of the vol-

ume related biases associated with estimates 

for stereological densities.  Moreover, forming 

ratios of numerical densities also minimizes the 

volume related biases by cancelling out the ref-
erence volumes. 

Reproducibility Test (Number): When applied 

to the number data in the stereology literature 
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database, the test produced a pattern like the 

one displayed previously by volume (Figure 3).  

Mathematical markers once again congregated 

around a central connection ratio and displayed 

the multiple copies consistent with global data 

and reproducibility (Figure 4).  In effect, the cell 

counts passed the reproducibility test.  Notice, 

however, that relatively few mathematical 

markers (peripheral dots) have more than three 
duplicate copies.       

 

Figure 4  When the reproducibility test was applied to the the data set consisting of cell counts (numbers), the pattern consistent 
with the presence of global data and reproducibility appeared.  Most of the connections, however, contained the minimum 

number of connections allowed – just 3.  Curiously, only about 1% of the mathematical markers in the data set qualified for the 
test (Table 1) – the lowest score to date.                   

Surface: Surface areas estimated as surface 

densities (S/V) with stereological methods are 

volume dependent and as such subject to vol-

ume related distortions.  Forming ratios, how-

ever, effectively minimizes such distortions 

mathematically by cancelling out the offending 

reference volumes.  Consequently, surface ar-

eas should also provide global data comparable 

to that of the volume independent estimates 

for numbers (cell counts; Figure 4).  We can test 

this assumption by running the reproducibility 
test.   
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Reproducibility Test for Surface Areas: When 

plotted as mathematical markers vs. connection 

ratios, the surface area data also passed the re-

producibility test (Figure 5) – even more con-

vincingly than the one for numbers (Figure 4).  

Notice that many more connections exist be-

tween the markers and the connection ratios 

for surfaces than for numbers (compare Figures 

4 and 5).  This occurred even though the num-

ber of mathematical markers available for the 

surface area test was only 20% of that used for 

the numbers and even less than that (6%) for 

volumes (Table 1).  

 

Figure 5    The surface area data (cell organelles) also passed the test, displaying many of the dark blue spindles seen earlier for 
the MRI volume data.  In spite of its relatively smaller size, the surface areas displayed a reproducibility efficiency five times 

greater than that seen for the numbers.       
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The remainder of the report illustrates that the 

reproducibility test can assume many forms.  If, 

for example, we plot the mathematical markers 

for cell organelles against their citation num-

bers, we get a global view of data connectivity – 

as it exists in the stereology literature database 

(Figure 6).  In the figure, each box contains the 

citation number of a paper, as indexed in the 

database (now available online).  The presence 

of the same mathematical marker in multiple 

publications demonstrates the global nature of 

the stereology literature.  In effect, accuracy 

and reproducibility characterize both biology 
and the biology literature.       

 

Figure 6  When surface areas of organelles coming from a wide variety of cell types and species (frogs to humans) are expressed 
as mathematical markers, related to their citation numbers (boxed), and plotted, global patterns in the stereology literature 

become apparent.  Such patterns indicate that reproducibility and accuracy are widespread.

The Role of Connectivity 

Why is connectivity so important to biology?  It 

connects its parts by rule to form complexities, 

as a way of optimizing those outcomes that en-

sure its success and survival.  Our current strat-

egy consists of tapping into these biological 

complexities by connecting snippets of these 

rules into informative patterns.  We can do this 

because recent advances in technology allow us 

to assemble and interpret large data sets and 
patterns.  

Figures 3, 4, and 5 indicate that biology rou-

tinely favors some connection ratios over oth-

ers, at least for volumes, numbers, and surfaces 

(see also Bolender, 2006, 2010).  Recall that 

these figures indicate that a given connection 

ratio (central point) can accommodate both 

similar (multiple blue lines) and different math-
ematical markers (multiple peripheral points).   

An immediate consequence of comparing con-

nection ratios to mathematical markers is that it 
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raises fundamental questions about the rela-

tionship of parts to connections.  Although we 

can be reasonably confident that DNA codes for 

both parts and connections, we don’t know if 

they are being controlled together or sepa-

rately.  If, for example, biology is controlling its 

parts and connections separately, then disor-

ders – or for that matter any type of phenotypic 

change – is subject to at least two levels of 

oversight.  This means that disorders of the 

brain, for example, could be explained by ab-

normal parts, abnormal connections, or some 

combination of the two.  Consequently, know-

ing what’s in play becomes critical to interpret-
ing results and pursuing solutions.      

Seeing the Big Picture: Since both mathematical 

markers and their connection ratios represent 

universal data types, we can use them to sum-

marize large and otherwise heterogeneous data 

sets.  Figure 7, for example, shows that the 

combined data set for volumes, numbers, and 

surfaces – expressed as connection ratios – are 

highly interconnected.  Such a pattern suggests 

that different data types are sharing similar 
rules of organization.     

 

 

Figure 7  Although the volumes, surfaces, and numbers of 

parts represent distinctly different data types in terms of 

what they measure, their connection ratios show extensive 
connectivity.  In effect, different data types can share the 
same rules.  

If, instead, we plot the connection ratios of Fig-

ure 7 against species, the three data types (V, S, 

N) continue to display extensive connectivity 

(Figure 8).  Note that the animals in the figure 

are grouped according to the similarity of their 

connections – an analytical feature of the Com-
munityGraphPlot (Mathematica 11).  

 

 

Figure 8  Even after the connection ratios of the volume, 

surface, and number databases were combined and 
plotted against species, the connectivity remained.  Recall 
that these data came from parts ranging in size from 

organs to organelles, responding to a wide range of 
experimental conditions, and carrying different 
methodological biases.  In effect, connectivity appears to 
be a major unifying principle in living systems.        

If, for example, we look just at the surface areas 

of cell organelles distributed across the animal 

kingdom, we can see the extent to which con-

nectivity operates as a fundamental principle of 

biological systems (Figure 9).  It appears that all 

the species included in the plot are playing by 

the same set of connectivity rules. 
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Figure 9  When organelle surface areas are plotted against 

connection ratios, they form seven clusters - all of which 
are highly interconnected.   

We can also look at data from a single paper 

and compare the connectivity of mathematical 

markers to those of connection ratios.  This tells 

us something about the relationship of one cell 

to another in same tissue.  Consider, for exam-

ple, hepatocytes, fat storing cells, endothelial 

cells, and Kupffer cells of the rat liver.  When we 

plot the mathematical markers for the surface 

areas of cell organelles against the cell types, 

we find that all the cells share some of the same 

markers (Figure 10).     

 

Figure 10  In the rat liver (Adapted from Blouin et al., 1977 
[977]), hepatocytes, fat-storing cells, Kupffer cells, and 

endothelial cells display both unique and shared 
mathematical markers.  Notice how each cell connects to 
the other three.  

If, however, we replace the mathematical mark-

ers of Figure 10 with their equivalent connec-

tion ratios (Figure 11), the number of cell to cell 

connections increases dramatically.  The figure 

suggests that the design of a given cell appears 

to include two distinct subpopulations of con-

nection ratios – one shared and the other not 

shared.  In effect, the genetic programming of 

cell organelles can be detected phenotypically 

by the presence (or absence) of specific mathe-

matical markers and connection ratios.  Such in-

formation may prove helpful in understanding 

the fundamentals of differentiation or in ex-
plaining how a cell can change its phenotype.   

 

Figure 11  When the mathematical markers of Figure 10 
are replaced by their connection ratios, connectivity 
between the cells increases markedly.  Notice how tightly 
the cells are interconnected phenotypically.     

When we replace the dots shown in Figure 11 

with the names of the cells and connection ra-

tios (Figure 12), specific connections can be 
identified.     
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Figure 12  Names and locations of the cells and 

connections summarize the complexity of the relationship 
of one cell type to another in the rat liver.  Enlarge image 
as needed.  

To view cell to cell connectivity at a global level, 

we can plot the organelle surfaces of all the cell 

types in the stereology database against their 

mathematical markers (Figure 13).  Once again, 

we find a similar pattern of shared markers.  

Since the differentiated cells of a given animal 

derive from the same source (zygote) and dif-

ferent animals share many of the same genes, 

this is exactly the pattern we would expect to 
see.     

 

Figure 13  Extensive sharing of mathematical markers – 
derived from the surface areas of cell organelles - occurs 
within and across animal species. 

If we take the same set of mathematical mark-

ers shown in Figure 13 but substitute the cita-

tion numbers for the cell types, we get a global 

view of cell to cell connectivity as it exists in the 
biology literature (Figure 14).   

 

Figure 14  One way of testing for reproducibility consists of 
plotting the mathematical markers of cells against their 

citation numbers.  The plot demonstrates the global nature 
(read reproducibility) of published data.  Recall that the 
mathematical markers being used here include 

alphanumeric strings containing six variables – making it a 
tough test to pass.  

Finally, if we replace the mathematical markers 

of Figure 14 with their connection ratios (Figure 

15), the resulting view of the literature reveals 

an underlying global pattern of remarkable con-
nectivity and reproducibility.   

 

Figure 15  The plot displays the relationship between 
citations and connection ratios, which were derived from 

the surface areas of cell oranelles.  It illustrates the 
presence of widespread connectivity within the stereology 

literature.  
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In summary, we can draw the following conclu-

sions.  By equating the existence of global data 

to that of reproducibility, it now appears that 

the biomedical literature contains far more re-

producible results than we previously thought.  

The point to take from these examples is that 

we can readily find reproducibility throughout 

the literature, once we know where and how to 

look for it.    

 

The Highly Adaptive Brain 

Although earlier reports have explored the rela-

tionship of mathematical markers to disorders 

of the brain (Bolender, 2011-2015), our purpose 

here is to upgrade the topic by adding the new 
results coming from the connections ratios. 

In spite of knowing many of the detailed mech-

anisms by which biological parts are produced, 

we still know surprisingly little about the quanti-

tative relationship of parts to their connections.  

It now appears that a deeper understanding of 

this relationship will be fundamental to our un-

derstanding of biology and of the disease pro-

cess.      

Volumes: When, for example, we plot connec-

tion ratios against 24 disorders of the brain, the 

picture that emerged from the MRI data set 

(IBVD) was one of intense connectivity (Figure 

16).  The plot demonstrats the extent to which 

different disorders share a common connectiv-

ity platform.   

 

Figure 16  Connection ratios derived from a panel of 24 

disorders of the human brain display four clusters all of 
which are interconnected.  This MRI data set – derived 
from the IBVD - indicates that disorders share many of the 

same connection ratios.  The clusters group disorders 

according to their affinities: A (Alzheimer, Williams-syn-
drome), B (adhd, Aspergers-syndrome, Huntington-dis-
ease), C (alcohol, autism, borderline-personality-disorder, 

Down-syndrome, dyslexia, epilepsy, fragile x, Klinefelter-
syndrome, major-depressive-disorder, ocd, ptsd), and D (bi-

polar, panic-disorder, schizophrenia, velocardiofacial). 

We can begin to understand the complexity of 

the disorders puzzle by plotting the connection 

ratios of normal patients (C) against those pre-

senting with disorders (E).  The results in Figure 

17 show two sets of unique connection ratios 

(C, E) separated by a shared set (E=C).  The ex-

tent of the sharing seen at the global level was 

unexpected because duplicate copies of the 

mathematical markers (E=E and C=E) were re-

moved from the individual papers – before their 

connection ratios were plotted.  Since a shared 

category exists (C=E), it appears that a given 

connection ratio can support either a normal or 

abnormal complement of parts.  However, the 

key point to take from the figure is that distinct 

populations of connection ratios exist for both 

normal and abnormal brains (Figure 17).  From 

this, it appears that connectivity is either con-

tributing to the disease process or being pro-

duced by it.  Whatever the case may be, the an-

swer presumably originates somewhere in our 

DNA.  But, where?                         
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Figure 17  When the MRI data of the IBVD are translated into connection ratios for control (C) and experimental (E) patients and 
plotted, they form three distinct groups of connection ratios – abnormal (E), shared (E=C), and normal (C).  Notice that once 
again we find a large number of connection ratios in play.      

Next, we can burrow into the data set shown in 

Figure 17 to tease out some of the details asso-

ciated with the connectivity patterns.  If, for ex-

ample, we take two MRI publications on schizo-

phrenia (citations 652 and 5165) and plot the 

parts estimated therein against their citation 

numbers, we find that the papers have only a 

single part in common - the temporal lobe (Fig-

ure 18).  Given such a result, it would seem logi-

cal to conclude that the data of the two papers 

have very little in common.  In fact, this turned 
out not to be the case.      

 

 

Figure 18  When the names of the parts published in two 
different papers on schizophrenia are plotted against their 

citation numbers, only only 1 of the 61 parts is shared by 
both papers (temporal lobe). Original data attributed to 
Swayze et al., 1992 [652] and Goldstein et al., 1999 [5165]. 
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When we convert the volume data of these two 

papers (652 and 5165) into connection ratios 

and plot them against their citation numbers, 

notice what happens.  Now, we find widespread 

connectivity.  Almost all the connection ratios 

(97%) in publication 652 duplicate those in 5165 

(Figure 19).  Such a result suggests that schizo-

phrenia is redefining the connectivity of brain 

parts in a way apparently unrelated to the iden-

tities of the individual parts.  In effect, the fun-

damental cause of schizophrenia might be ex-

plained entirely or in part by the presence of 
abnormal connectivity ratios.                               

 

 

Figure 19  Publications 652 and 5165 share almost 

identical connection ratios, even when the parts of the two 
data sets are almost entirely different.  Such a finding 
suggests that schizophrenia is instigating major changes in 

connectivity patterns throughout the human brain.  If true, 
then schizophrenia may be interfering with the design rules 

at a deeper level, perhaps resetting a major portion of the 
biology blueprint.    

This raises the possibility yet again that schizo-

phrenia – as well as other disorders of the brain 

– have their roots in both parts and connec-

tions.  If this is the case, then attempting to 

solve disorders such as schizophrenia using just 

the data of parts may prove to be unproductive.  

Once again, we seem to be remined that com-

plex problems require equally complex solu-
tions. 

Numbers: Cell counts (numbers) associated 

with schizophrenia displayed a pattern similar 

to the one just described for volumes.  The plot 

of parts vs. citation numbers also included a sin-

gle match, which, in this case, was the medial 

dorsal nucleus (Figure 20).  If, as before, we re-

place the names of the parts with their connec-

tion ratios, a similar burst of connectivity results 
(Figure 21).    

 

Figure 20  For those papers characterizing schizophrenia 
with cell counts (numbers) and mathematical markers, 
only two (3039 and 5010) shared the same part (medial 
dorsal nucleus).  

 

Figure 21  When the citation numbers of the papers listed 
in Figure 20 were plotted against their connection ratios, a 
pattern of widespread connectivity appeared. 
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The pattern persists for species.  When we look 

for patterns in cell counts (control and experi-

mental) across different animals, only humans 

and rats share the same mathematical markers 

(Figure 22).  In contrast, Figure 23 shows that 

connection ratios cast a far wider net.       

 

Figure 22  When mathematical markers derived from cell 
counts are plotted against species, only humans and rats 
shared the same markers. 

 

Figure 23  When, however, the connection ratios replace 
the mathematical markers, many more animals became 
connected by sharing similar patterns.  Note that of the to-
tal number of connection ratios (108,824), 1,236 occurred 

at least three times.  The distribution included: human 
(396), monkey (38), mouse (24), rabbit (72), rat (704), and 
shrew (2).       

 

DISCUSSION 
 

Finding a solution to the reproducibility prob-

lem required the use of patterns.  In complex 

settings, such as biology, only patterns seem ca-

pable of accessing the deeper levels of infor-

mation needed to address fundamental ques-

tions.  By managing reproducibility effectively, 

we can now enjoy the advantage of having both 

accuracy and precision in play.  The test, which 

found reproducibility to exist across all the data 

sets considered (Figures 1-23), demonstrated 

that the biology literature can be a rich source 

of reliable information.     

This global reach of patterns stands in sharp 

contrast to our current approach to reproduci-

bility in the life sciences, which consists largely 

of duplicating the data points of a single experi-

ment.  Although increasing precision can im-

prove reproducibility locally, advanced players 

are likely to prefer accuracy because of its rela-

tionship to first principles.  Besides, finding an 

accuracy-based solution to the reproducibility 

problem required little more than noticing that 

biology expresses its reproducibility principle as 

ratios of its parts.  Of course, the genius of biol-

ogy is clearly in play in that it uses these ratios 

to let accuracy and precision converge – pro-
ducing the best possible solution.   

Arguably, playing the complexity game with bi-

ology requires rethinking almost everything we 

do.  Not taking the leap into complexity, how-

ever, appears to be even more daunting.  Our 

chronic inability to solve the reproducibility 

problem serves as a stark reminder of the limi-

tations being imposed on our science by a griev-

ously outdated theory structure.  To make mat-

ters worse, our statistical allies are now taking 

us to task over the inadequacies of our research 

data (Ioannidis, 2005; Van Regenmortel, 2004), 

our funding is on a downward spiral (NIH Re-
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search Funding Trends, Nature Cell Biology Edi-

torial, 2012), we continue to be cut off from our 

published data by paywalls (Murphy, 2016), and 

our results are chronically open to criticism (The 

Economist, 2016).  The recent article in Nature 

(Baker, 2016) aptly calls our current state a cri-

sis, but our problems go far deeper than just 

precision.  We find ourselves in trouble because 

we are failing to run our science in a way con-

sistent with the principles of the living systems 
we are trying to understand.     

If we look at reproducibility from biology’s per-

spective, its solution to the problem illustrates 

how it deals with complexity.  To maintain its 

status as a living system, it must enforce strict 

rules of reproducibility to insure the existence 

of its emergent properties (e.g., life, cognition, 

survival).  At the same time, however, it must 

allow its parts to change in response to those 

forces within and beyond its control.  In effect, 

using ratios to maintain order instead of focus-

ing on just individual parts represents a clever 

solution, one that obviously works quite well.   

 

Reproducibility Repackaged 

Our current willingness to base our definition of 

reproducibility on precision (Baker, 2016), 

comes with more than a few drawbacks.  We 

can flesh out some of these negatives by asking 
simple, but thought-provoking questions.       

Consider the standard definition of reproduci-

bility given at the outset: “Reproducibility is de-

fined as an ability to duplicate the results of an 

experiment either by the same researcher or by 

an independent one.”  If we express this defini-

tion as an expression, we would expect it to 

contain a variable that acts like a constant.  To 
wit: 

Pi (experiment 1) = Pi (experiment 2) ... = Pi (experiment n), (1) 

where P is a data point characterizing some part 
i.   

Let’s look at a published data set to see if equa-

tion 1 gives us what we want.  If, for example, 

we select estimates for the amygdala from the 

IBVD and plot them, we find a widely-dispersed 

cloud of data points (Figure 24), illustrating the 

variation we have come to expect from biology.  

If we duplicate any one of these points – in 

keeping with the logic of equation 1 -  will we 

satisfy the reproducibility requirement?  In 
keeping with the definition above, yes.   

 

Figure 24  A plot of 58 estimates for the volume of the 
amygdala produces a cloud of data points (IBVD).  Note 

that each data point represents the average of several pa-
tients.    

Herein lies the problem.   Every point we 

choose to duplicate represents a local solution, 

which satisfies the precision part of the repro-

ducibility definition, but ignores the more im-

portant role of accuracy (correctness).  Such an 

arrangement triggers dicey questions.  Does this 

mean that by duplicating an experimental out-

come we can consider the outcome to be cor-

rect – even if it is incorrect (precise, but inaccu-

rate)?  If an experiment cannot be duplicated, 

does it mean that the original results were 

wrong?  Can one answer such contradictory 
questions convincingly?  Most likely, no.    
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Since estimates for the amygdala produced a 

cloud of scattered data points (Figure 24), does 

this mean that an accurate estimate is impossi-

ble because of biological variation and experi-

mental biases?  Such an irritating question be-

comes inescapable when we use the precision 

argument to define reproducibility.  To avoid 

having to answer such unanswerable questions, 

the report substituted a definition for reproduc-

ibility based on accuracy.  This put the onus of 

having to defend the results on biology and its 

logical surrogate - the biology literature (Figures 
3-5).          

The strategy behind taking an accuracy-based 

approach to reproducibility, of course, requires 

asking seemingly unanswerable questions with 

the knowledge that biology already knows the 

answers.  How can this be demonstrated?  Con-

sider the following example.  If the amygdala is 

subject to biology’s accuracy rule, is it possible 

to show that the 58 points displayed in Figure 

24 were generated accurately – despite their 

scattered distribution?  The answer, of course, 

is yes - if we know how biology applies its accu-
racy rule.   

Let’s start with the target analogy often used to 

explain accuracy and precision.  Recall that ac-

curacy can be likened to a set of data points 

(hits) all of which cluster in the center of the 

bullseye.  Clearly, this is not the case in Figure 

24.  Accordingly, most reasonable people would 

conclude that biology ignores accuracy when it 

produces an amygdala.  Biology, however, 

would strongly disagree.  If we look at the set of 

points shown in Figure 24 through biology’s 

eyes, the amygdala would appear as a single 

point (Figure 25).  Why?  Because biology puts 
its accuracy where it works best for biology.   

 

Figure 25  When the left and right sides of the amygdala 
are expressed as 58 ratios, the scatter plot shown in Figure 
24 is replaced by a single point (a decimal ratio value).  No-
tice that such a point becomes a measure of both accuracy 

and precision.  Adapted from Bolender, 2012; see reference 
for details).   

What does this mean?  Biology defines accuracy 

in the amygdala not in terms of a single volume, 

but rather as the ratio of two volumes - left to 

right (0.4:0.5).  Biology knows how to have it all 

(Figure 25) – accuracy (all 58 pairs of points are 

the same) and precision (all the points are su-
perimposed).   

 

Reproducibility Tested 

The reproducibility test provides two new capa-

bilities.  It gives us a single test that can be ap-

plied to a wide range of data types (Figures 3-5) 

and it supplies the global data needed to opti-

mize both precision and accuracy (Figures 1-25).  

By equating reproducibility to global data, we 

can define the phenotype as a continuous, 

quantitative platform extending from MRI (vol-

umes) to light microscopy (cell counts) to elec-

tron microscopy (surface areas) to molecular as-

says (optical densities).  The design of such a 

platform - defensible by quantitative arguments 

- simplifies our task of making the transition in 



18 
 

our approach to biology from simple to com-
plex.   

The reproducibility test was designed to make it 

extremely difficult to pass.  Triplet markers con-

sisting of six variables had to appear as dupli-

cates in at least three different papers - or sepa-

rate studies - to qualify.  Nonetheless, the data-

bases demonstrated repeatedly that the biology 

literature can meet and exceed this minimum 

requirement routinely (Figures 3-5, Figure 26).   

Consider, for example, the results shown in Fig-

ure 26.  It would be impossible for this image to 

appear unless biology and the biology literature 
were on the same page.     

 

Figure 26  The pattern illustrates biology’s rule-based ap-

proach to managing reproducibility.  When MRI data are 
plotted, mathematical markers form such rosettes (repro-

ducibility units) centered on unique connection ratios.  
Since many repeats (blue lines) can be seen for the periph-
eral points (mathematical markers), we can now imagine 
that both biology and the biology literature are remarkably 
good at using complex patterns to oversee accuracy.  See 

Figure 2 for labels.    

The big win to come from the reproducibility 

test, however, was the appearance of global 

patterns for membrane surface areas - esti-

mated stereologically with electron microscopy 

(Figures 9-15).  Since biological membranes sup-

ply the structural platform for constitutive 

marker enzymes, they should allow us to com-

plete a key part of the biology puzzle - a quanti-

tative phenotype extending all the way from or-
ganisms to molecules.   

Such a phenotype will have diagnostic and pre-

dictive properties and can be stored as a rela-

tional database with unlimited entry and exit 
points.                     

Summary: Reproducibility Test 

 The reproducibility test consists of plotting mathemati-

cal markers against their connection ratios.   

 It tests for the presence of global data, which serves as 

a measure of reproducibility. 

 Reproducibility comes from global patterns that come 

from biological accuracy. 

 It is assumed that global data are present when three 
or more duplicate copies (mathematical markers) exist 

for a given connection ratio. 

 The reproducibility test identifies MRI data collected 

from patients as its gold standard. 

 

Connectivity Generates Patterns 

Global connectivity can be shown to exist in the 

biology literature when data are expressed as 

mathematical markers and connection ratios.  

In living systems, it appears that change, diag-

nosis-prediction, disorders of the brain, and 

now reproducibility all derive their global prop-

erties largely from the connectivity of parts 

(Bolender, 2012-2015).   

The connection ratios, which are defined herein 

as alphanumeric strings (partX:partY:partZ), 

represent a new data type.  They form distinct 

patterns, exist either as unique or shared 

strings, and define quantitatively a fundamental 
property of biology.         

Moreover, a given connection ratio embedded 

in a mathematical marker can be repopulated 

with different parts or alternate between 

steady and transitional states during the phases 

of a change (Bolender, 2016; Figure 1.11).  In 

other words, biology can hold connections con-

stant and change the parts or hold parts con-

stant and change the connections.  Detecting 

such events would appear to be essential to un-

derstanding the complexity of a biological 
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change.  As we discovered earlier with ratios, 

valences, and mathematical markers, connec-

tion ratios offer deeper insights into the inner 
workings of biology.        

We are beginning to understand that some of 

the best questions are those that seem at first 

impossible to answer.  If, for example, connec-

tion ratios identify rule-based patterns common 

to living systems, where do such rules come 

from and how does biology know when and 

where to apply them?  What factors, for exam-

ple, influence biology to select normal or abnor-

mal connection ratios (Figures 16-21)?  To an-

swer such questions, two possibilities come to 

mind.  Some design principles might be ex-

plained by self-assembly, whereas others may 

be the result of algorithms scripted in DNA.  If 

such scripts exist, how does one find and inter-

pret them?  When we change the coding of our 

DNA, how will this affect our global patterns?                

Summary: Connectivity 

 Connections represent one of two major components 

fundamental to biology as a complex system – parts 

(amount, composition) and connections (ratios). 

 Connectivity can be identified as the major source of 
global data, reproducibility, and accuracy in living sys-

tems. 

 Connection ratios represent a new data type, largely 
unexplored. 

 Connection data account for a substantial portion of 

the quantitative information coming to us from biol-

ogy. 

 

Disorders Reorder 

Disorders of the brain can be studied using 

parts (volume, surface, length, and number), 

connections (connection ratios), and a combina-

tion of the two (mathematical markers).  Prob-

lems arise, however, in that each option, which 

defines a distinct data platform, can lead to dif-
ferent outcomes with different interpretations.   

Moreover, even bigger problems arise when we 

collect data from one platform and then try to 

interpret it on another.  In fact, our current 

practice of routinely switching between plat-

forms helps to explain why the biology litera-

ture can be so contradictory.  Consider, for ex-

ample, our standard experimental method.  We 

simplify biology by selecting a few parts, quan-

tify them, and then try to explain how and why 

they behave as they do in a complex biological 

setting - knowing little about the behavior of 

the complexity.  A change, when taken out of 

context, is interpreted out of context.  It be-

comes disconnected from the reality of biology.           

If, instead, we start with simple data, translate 

them into complex patterns, and then use the 

patterns to solve a complex problem, we usu-

ally get what we want (e.g., a reproducibility 

test based on accuracy).  Since this approach to 

problem solving generates new discovery plat-

forms, we can use them to explore new solu-

tions to other problems.  

Consider disorders of the human brain.  After 

extracting connection ratios from their mathe-

matical markers and then plotting all 24 disor-

ders as a single group, widespread connectivity 

appeared within and across MRI publications 

(Figure 16).  When, in turn, control data were 

added to the data set of Figure 16, three unique 

clusters of data appeared - abnormal (E), shared 

(E=C), and normal (C) (Figure 17).  This result 

shows that disorders of the brain define a dis-

tinct population of abnormal connection ratios, 

which in some way are the result of an un-

known process capable of modifying ratios.  The 

presence of such a large population of abnor-

mal ratios (E) highlights the magnitude of the 

problem.  However, we are presented with yet 

another layer of complexity by the shared clus-

ter, where C=E.  The same connection ratio can 

be populated with either normal or abnormal 

parts.  Such a population becomes a ready 
source of false positives.   

A curious pattern appeared repeatedly in Fig-

ures 16 to 21.  The disorders seem to depend 
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more on the connectivity of the parts (ratios) 

than on the parts themselves (numerical val-

ues).  This suggests that solving the disorders 

puzzle – either individually or as a group – will 

require a far better understanding of the biolog-

ical principles underlying connectivity.        

Summary: Disorders of the Brain 

 Disorders of the brain define a unique set of connection 
ratios. 

 Connection ratios can define the relationship of one 
disorder to another quantitatively. 

 Connection ratios can become false positives. 
 

Concluding Comments 

If we define reproducibility as an ability to du-

plicate the results of an experiment, but have 

little success in doing so, then the simplest solu-

tion is to change the definition.  Such was the 

strategy pursued in this report.   

Reproducibility was redefined as the ability of 

biology (or an observer) to duplicate complex 

patterns globally.  In turn, the report deter-

mined the effectiveness of this revised defini-

tion by testing three different data sets for the 

presence of global data (Figures 1-23).  The re-

sults provided compelling evidence that the bi-

ology literature contains vast quantities of 

global data quite capable of passing reproduci-

bility tests.  Why?  By synchronizing the biology 

literature with biology, we were able to connect 

the dots: global data…reproducibility…accuracy.          

With the reproducibility piece of the biology 

puzzle in our portfolio, we find ourselves one 

step closer to the goal of building a single net-

work of information stretching seamlessly from 

phenotypes to DNA.  By extending the reach of 

our quantitative phenotype to membrane orga-

nelles (surfaces), we now have a platform from 

which to attempt a jump from cell organelles to 

molecules.  Since biological membranes carry 

protein molecules coded for in the genome, 

such molecules become a convenient link to the 

databases of molecular biology.  By translating 

molecular data into complex data types, we can 

begin to explore the relationship of patterns in 

the phenotype to those of DNA and RNA.  With 

diagnosis, prediction, and reproducibility in 

play, we now know where and how to look.     

In a world defined by information, a science defines itself 
by the way it makes its information available to those re-

sponsible for producing it. 
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