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SUMMARY

Giventhe encouragingresults reported last year for membrane surface areas, we now have the
incentive tolook for specific mathematical links between morphology and biochemistry. We also know
from textbooks on molecular cell biology (Alberts et al., 2014; Lodish etal., 2016) that genomes across
animal species display remarkable similarities. Infact, many biological partsin differentanimals display
what appear to be identical DNA sequences. Thisraisesaninteresting question. If differentanimals
share the same DNA codingfor given part, do such parts also share the same phenotype? Thereport
thisyearattempts to answer this question by making two assumptions. The first of these assumes that
the postulates of deDuve (biochemical homogeneity and single location) are correct, while the second
one assumesthatequations based onthese postulates have the powerto predict experimental
outcomes. Since we already know from an earlier report (2003) that predicting outcomes in biology
requires equations with R?=1, our task becomes one of identifying relationships of structure to function
using equations capable of fulfilling the requirements of prediction and the homogeneity postulates
(deDuve, 1974). If successful, we willhave ananswerto our questionand perhaps the beginnings of a
new strategy forshuttling data back and forth between the phenome and the genome. Asthe story
unfolds, we willhave to decide —repeatedly - how to access a highly organized and complex biology
using data taken froma highly eclecticand disconnected literature. Consequently, prediction often
comesto our rescue. Thiswill include predicting morphology from biochemistry, biochemistry from
morphology, morphology from morphology, and biochemistry from biochemistry. Since the report
consists largely of reworking the original data of published studies, calculation worksheets are included
inthe Appendixas Excel (Microsoft, Redmond, WA) and Mathematica (Wolfram Research, Champaign,
IL) files. Thereportinits entirety is available online (playingcomplexitygames.com).

INTRODUCTION
A postulate isastatementassumed to be true postulates will be told with equations derived
without proof - existing as aself-evident, basic from biology by way of the biology literature.
principle.

Let’sbegin. If the relationship of structure (S)
In thisreport, we considertwo such postulates. to function (F) islinear, then the slope (m) of
They come from the relationship of structure the curve definesthisrelationship as:

and function and serve to connect cell to

molecularbiology. The story of these F =m$ (1)



S =F/m (2)
wherem = Ay/Ax.

Notice thatthe slope defineseachrule asa
ratio(m = F/S orm = S /F). By becoming
familiarwith suchrules, we can use themto
predict data and patterns that don’t currently
existinthe literature. In effect, prediction
becomesanew problem-solving tool.

The Strategy

The report introduces the postulate of
biological homogeneity, which states that
biological parts derived from the same
instructionsinthe genome display the same
relationships of structure to functionin the
phenome. Ineffect, thismeansthatthe
equations defininga biological part, such as the
liver, apply equally well to livers of similarand
different animal species—whenthey carry the
same set of geneticinstructions. Before we can
testthis new postulate, however, we mustfirst
verify the two biochemical postulates of
deDuve (1964, 1974), which serve to define the
relationship of structure tofunctionin biology.

The postulate of biochemical homogeneity
states that members of a given population have
the same biochemical composition, whereas
the postulate of single location assumes that
each constituent [marker enzyme] isrestricted
to a singleintracellularsite. Inshort, enzymes
(biochemical constituents) are uniformly
distributed atunique cellularlocations
(morphological components).

For convenience, we will pursue an approach
largely unfamiliarin biology, wherein published
experimental data will be fitted to equations
displayingR?s=1 and, in turn, used to predict
outcomes (equations) with similar R%zs. Why R2s
= 1? With such equations, structure and
function become interchangeable wherein one
can predictthe other.

To thisend, we will direct aseries of questions
to data sets coming from several different
publications. Forexample, does biochemical
homogeneity existin the hepatocytes of rat
livers? Are markerenzymesrestrictedtoa
single cellularlocation? Doliversdisplay
biological homogeneity? Why s prediction
indispensable? Whatdoes ittake to playa win-
win game with the biology literature?

The Process

Several years ago, we attempted to confirmthe
postulates of deDuve by combining morphology
(stereology, freeze-fracture, and cytochemistry)
with biochemistry (analytical fractionation and
enzymology)—(Blouinetal., 1977; Bolender, et
al., 1978; Weibel and Paumgartner, 1978; Losa
et al., 1978; Bolender, etal., 1980). By
calculating recoveries, we could show that both
morphology and biochemistry were largely
conserved. Instead of confirming biochemical
homogeneity, however, the datasuggested
biochemical heterogeneity. Moreover, the
postulate of unique location was left untested.

But why try again? The difference between
thenand now isthat our prospectsforsuccess
are muchimproved. We now have three new
clues- onefromthe 2003 report (prediction
requires R2=1), one fromthe 2016 report
(reproducibility exists within and across cells
and animals), and one from molecular biology
(biological parts - e.g., cellsand organs - can
share remarkably similar geneticcoding within
and across species). Sinceitseemslikely that
biochemical homogeneity exists (based on the
geneticevidence alone) and since we have a
strategy for findingit (R?= 1), we can approach
the homogeneity problem as a mathematical
puzzle. Moreover, we canadd a measure of
confidence by conceding at the outsetthat our
solutions do little more than mimicsolutions
that already existin biology. Thisstrategy,



which consists of creating parallel complexities,
always seemsto work provided we get biology’s
approval. Prediction and reproducibility signal
such approval.

Our first job becomes one of figuring out how
to setup the problem such that we can use
published datato solve for biochemical
homogeneity and unique location. If we start
with the first paper of the previous attempt
(Bolenderetal., 1978), we have morphological
and biochemical datasets derived from intact
tissue and biochemical fractions. The paper
reportedindividual animal dataforthe
morphology, but just averages (mean values)
for the biochemistry. Consequently, the
available dataset will determine our approach
to solving the first problem (biochemical
homogeneity). We know thatthe
morphological data will supply the three data
points needed towrite alinearequation, but
how do we get the three corresponding data
points from just one biochemical value?

METHODS AND RESULTS

The Enterprise Biology Package

The 2017 packageincludesthe yearly report
and related worksheets (Appendix).

Figure 1 The EBS package for 2017 includes the yearly
report with a focus on postulates central to cell and
molecular biology.

Overview

The report revisits the data of several published
studies with the goal of extracting new
information from old data. Thiswill be done
withinthe framework of anew postulate
(biological homogeneity), one thatassumes a
one to one relationship exists between the
genome and phenome. We will argue thatif
the livers of two animals represent the
downstream product of the same genetic
information, then these livers can be expected
to share the same set of rules — independent of
the speciesinwhichtheylive.

Biochemical Homogeneity

We begin by exploring the deDuve’s postulate
of biochemical homogeneity, the results of
which will allow us to make biochemical and
morphological predictions. Inturn, we will use
these predictions to test the new postulate of
biological homogeneity.

Paper 1 (original data): By combining
morphological and biochemical datawithin the
framework of analytical fractionation (deDuve,
1964, 1974), it was possible to show by
calculating recoveries that morphological and
biochemical datawere conserved similarly
(Bolender, etal., 1978). Sucha finding
represented an essentialfirst step in confirming
the postulates of deDuve.

Paper 1 (data reworked): If these biochemical
postulatesare correct, then the reworked data
shouldfita curve withan R2=1. Morphology
should follow biochemistry and vice versa. In
effect, the relationship of structure to function
becomesthe set of biological rules given at the
outsetas Equations 1and 2.

Considerthe first problem we have tosolve. If
we have individual animal estimates for the

surface areas of the endoplasmicreticulum (ER)



and a single, meanvalue forits markerenzyme
glucose-6-phosphatase (G-6-Pase), how do we
translate these datainto curve withan R? = 1?
These data are showninTable 1.

Table 1 Membrane surface area (ER) in the intact tissue is
juxtaposed to the activity of an er marker enzyme (G-6-
Pase). Both are derived from the rat liver.

G-6-PASE membrane enzyme
ER surface activity

m?/g liver U/gliver

tissue homogenate

er g-6-pase
animal 1 er-1 4.870 27.421
animal 2 er-2 4.310 27.421
animal 3 er-3 4.620 27.421

As presentedinTable 1, the published data
cannot give usa curve withanR? = 1 because
they do notyet conformto the homogeneity
postulate of deDuve (1964). A given amount of
membrane surface area (ER) does not carry the
same amount of enzyme activity, whichin Table
1isgivenasan average value [(27.421 units of
enzyme activity (U/g)].

An equation willhelp. Itshows how we can
reallocate the average enzymeactivity in
proportiontothe amount of er membrane in
each animal:

487x + 4.31x + 4.62x = 27.421, (3)
wherex = 1.9871, and

487 *x = 9.677

431 *x = 8.564

4.62 * x = 9.180.

When the membrane surfacesand enzyme
activities are related proportionately in accord
with the postulate of biochemical homogeneity,
we obtainthe required results (Table2). For
furtherdetails, see the calculation worksheet in
the Appendix (playingcomplexitygames.com;
Report2017).

Table 2 The experimental data now conform to the
postulate of biochemical homogeneity.

G-6-PASE membrane enzyme
ER surface activity
mz/g liver U/gliver
tissue homogenate
er g-6-pase
animal 1 er-1 4.870 29.031
animal 2 er-2 4.310 25.692
animal 3 er-3 4.620 27.540,

When we plotthe individual animaldatain
Figure 2, the resulting equation withanR?=1
demonstrates the presence of biochemical
homogeneity. Thisisreassuringinthatwe now
have an equation that effectively passes
throughthe origin (yintercept=0.0063) and
defines the relationship of structure to function
inbiology by rule. Ineffect, we can now predict
biological outcomes with the required level of
assurance (R?=1).

Relationship of Structure to Function
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Figure 2 The linear relationship of G-6-Pase activity to the
surface area of the er has an R2=1. The equation solves
for y (units of enzyme activity) when an ER membrane
surface area (m2/g) is assigned to x.

If we reverse the axes of the plotin Figure 2, we
getan equation that uses enzyme activity to
solve for ER surface area (Figure 3).



Relationship of Function to Structure
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Figure 5 plotsthe morphological recoveries
giveninTable 3. Althoughthe F/Hrecoveries
are comparable for both approaches, the
predicted recoveries show aclearimprovement
with membrane recoveries closer to 100%.

Figure 3 This equation allows us to predict the surface
area of the er from the biochemical activity of G-6-Pase.

Next, in an Excel worksheet, we can use the
equation of Figure 3 to predict the surface areas
of the er membranes from G-6-Pase activities
(Figure 4). When appliedto G-6-Pase measured
intissue fractions (Table 3): E (extract), N
(nuclear), M (heavy mitochondrial), L (light
mitochondrial), and P (microsomal) fractions;
(note that the supernatantfraction (S)is
without membranes), the postulates of deDuve
behave as expected asecond time.

gbp(U/g) enterY—> 22.620
slope y intercept
0.1677 0.0011
er(m?/g) X= 3.794

Figure 4 A simple calculator - programed in an Excel
worksheet - is shown predicting an er surface area (3.794
m2/g) from an enzyme activity (22.62 U/g). Recall thatin a
linear equation (y = mx + b), m is the slope and b the y
intercept. When the y intercept approaches zero (e.g.,
0.0011), it effectively passes through the origin.

Table 3 The surface areas of er membranes (green overlay)
in tissue fractions were predicted using the equation
shown in Figures 3 and 4. Recoveries were calculated for
F/T, H/T, and F/T, where F=fractions (en+m+l+p+or-s),
T=intact tissue, and H=homogenate. Paper 1 (original) and
predicted recoveries are listed.

S(er) Predicted from G-6-Pase Activity

F F F/H FH T BT FT
s(er) g-6-pase g-6-pase s(er) s(er) s(er)

e 3.794 22.620 4.870

n 0.715 4.256 26.876 <H->  4.509 4.310 4.509

m 0.611 3.639 4.620

| 0.409 2.435 13.800

p 2473 14.740 4.600 4.600 4.600

s 0.072 0.420 25.490 <F->  4.280 4.280

paper1  recoveries 94.66% 94.60% 84.30% 80.50%

predicted recoveries 94.84% 94.92% 98.03% 93.05%

S(er) Predicted from G-6-Pase Activity
120.00%
100.00%
> 80.00%
@
3 60.00%
o
Q
& 40.00%
20.00%
0.00%
s(er)
F/H F/T
paper 1 94.66% 84.30% 80.50%
@ predicted 94.84% 98.03% 93.05%

Figure 5 A recovery equal to 100% represents the best
possible outcome, wherein nothing is lost or gained
because of the fractionation. The figure illustrates the
ability of the R2 = 1 equation to predict the amount of ER
membranes in the homogenate (H) and fractions (F); T
identifies the amount of hepatocytic ER membrane
estimated in the intact tissue.

Notice inthe plotabove that predictions
derived from the biochemical homogeneity
equation (R?=1 equation) weremore
successful at detecting morphological
membranesintissue fractions thanthose based
on the original stereological methods of Paper
1. More importantly, perhaps, the calculator
shownin Figure 4 generated the resultsinjusta
few minutes.

Since Paper1 also included dataforseveral
othermembrane-bound marker enzymes, they
too were examined for homogeneity by
subjectingthemto R?2= 1 test. The good news
isthat they all passed: cytochrome oxidase
(CYOX) forthe inner mitochondrial membrane
(IMIM), monoamine oxidase (MAQO) forthe
outer mitochondrial membrane (OMIM), and
5’nucleotidase forthe plasmamembrane (PM).
Since the complete set of calculations are
includedinthe worksheets, only one plot per
enzyme isgiven here.
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Figure 6 The equation predicts the surface area of the inner
mitochondrial membrane (IMIM) - with an R2= 1 - from
cytochrome oxidase (CYOX) assayed in homogenates
(E+N).
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Figure 7 The equation predicts the surface area of the
outer mitochondrial membrane (OMIM) - withan R2 =1 -
from monoamine oxidase (MAO) assayed in homogenates
(E+N).
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Figure 8 The equation predicts the surface area of the
plasma membrane (PM) - withan R2= 1 - from
5’nucleotidase (5’NUC) assayed in homogenates (E+N).

Summary: (Paper 1)

e Dataanalyzed atthe level of individual
animals can befitted to linear curves
(Equations 1and 2) thatdisplay R?= 1.

e The existence of R? =1 curves supports the
postulates of deDuve by demonstrating

mathematically a direct relationship
between structure and function.

e The postulates gain furthersupport from
the R? = 1 curves by their ability to predict
surfaces areas in tissue fractions with
recoveries at or near 100%.

Paper 2 (original data): The objective of this
paper (Losa etal., 1978) wasto identify
membranesin the tissue fractions of
biochemistry by quantifyingintramembrane
particlesseenin freeze-fracture replicas. Inthe
microsomal fraction, forexample, 63% of the
membraneswere identified as ERwith freeze-
fracture and 62% with G-6-pase cytochemistry.
The remainingmembranesincluded PM+ IMIM
(20%) and OMIM (17%). Earlier, however,
Beaufayetal., 1974 reported thatthe
percentage of the ER inthe microsomal fraction
was closerto 77%.

Paper 2 (reworked data): UsingR? =1
equations, we can predict the membrane
composition of the microsomal fraction from its
markerenzyme data. First, however, we need
to show that the equations developed with one
set of animals continue to hold true when
appliedto a new setof animals displaying
different body and liver weights. Thiswill tell us
whetherthe rules detected with one group of
animals apply to other groups sharing the same
speciesand liverrelated genes. In otherwords,
does genetichomogeneity translate into
phenotypichomogeneity?

To seeifthe R? = 1 equations generalize, we can
compare the predictions coming fromthe two
differentsets of animals usedinPapersland 2.
The top panel of Figure 9 shows remarkably
similardistributions for ER membrane surface
areas (S) and G-6-pase activities (U) in the
membrane containing fractions (N, M, L, P) for
Papers1and2. When-foreach paper- the
individualsurface areas are plotted against their



respective enzyme activities, the relationship of
structure to function is defined by exactly the
same R? = 1 equation (bottom panel). Ineffect,
the data of both papers 1 and 2 adhere
assiduously to the postulates of deDuve.

Membranes in Fractions: Surface (S) + Units (U)
of Activity

£ 4.00
0 B
8 _ _

Paper 1-S Paper 1-U Paper 2-S Paper 2-U

EN 071 4.26 0.62 371
M 0.61 364 045 266
L 041 244 034 203
P 247 14.74 228 13.58

Papers 1 and 2 Share the Same R? = 1 Equation
@ Paper 1 Paper 2

16.00

14.00 y = 5.963x - 0.0066 o
12.00 RZ=1 o
10.00
oo
3 8.00
6.00 Y=5.96.::X-0.0066
4.00 o R#=1
2.00 ol
0.00
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Figure 9 The plots Illustrate that the same mathematical
relationship exists between the data of Papers 1 and 2 (ER
surface vs. activity of its marker enzyme G-6-Pase).

Now we can turn our attentionto the freeze
fracture and cytochemical data of Paper 2.
When we use the R? =1 equations of Paper1to
predict membrane surface areas [plasma
membrane (PM), inner mitochondrial
membrane (IMIM), endoplasmicreticulum (ER),
and outer mitochondrial membrane (OMIM)],
fromthe biochemical data of paper 2, we can
plotthe new estimates next to the original ones
from freeze-fracture (Figure 10). The figure
indicates that the two estimates fail to agree.

Membranes in Microsomal (P) Fraction
100.0% 88.0%
90.0%
80.0%
70.0% 63.0%
60.0%
50.0%
40.0%
30.0%
’ 20.1% 17.0%
20.0% 5 4%
10.0% ° 4.7%
0.0% — — -
Freeze-Fracture Predicted from Enzyme Activity
B PMHIMIM 20.1% 7.4%
ER 63.0% 88.0%
oMIM 17.0% 47%

Figure 10 The distribution pattern of cellular membranes in
the microsomal (P) fraction estimated with freeze-fracture
differs from those predicted from enzyme activities.

How might we explain thesedifferences?

1. Theintramembrane particle densities,
which were used toidentify microsomal
membranes, showed considerable overlap
for the PF facesintheintact tissue
standards and the PF face of the PM and
IMIM in fractions, as suggested in Figure 4
and Table |; Paper2). Distinguishing RER
from the OMIM might have been the most
problematic(Figure4, Paper2). These
factors may have contributed to the higher
than expected values forthe PM+IMIN and
OMIM values shown in Figure 10.

2. AsreportedbyBlouinetal.(1977), 30% of
the plasmamembranesintheliver derive
from nonhepatocyticcells. Since the
contaminating plasma membranes are not
known to carry the marker enzyme
5’nucleotidase, they would be invisible to
the predicted value based on enzyme
activity, but possibly visible to freeze-
fracture. This mighthelpto explainthe
highervalues forthe combined PM+IMIM
membranesinthe P fraction (Figure 10).

In the discussion of Paper2, Losa etal., (1977)
estimated the amount of ER membraneinthe P
fraction— assuming biochemical homogeneity —
and arrived at a value somewhere between 76-
78%. [Note: If we divide the corrected surface
areas of the membranesinthe intacttissue
(Paper1) by the sum of the enzyme activitiesin




the four fractions— N+M+L+P (Paper2), we get
arough estimate forthe membrane surface
area associated with aunit of enzyme activity
(S/U).] By multiplyingthe S/Uvalues by their
respective enzyme activities inthe P fraction
(Paper2), we can estimate the membrane
surfaces (Figure 11). Notice thatthisnew value
for the ER (80.11%) comes closertothe 76-78%
suggested by Losaet al. (1977) and the 77%
value of Beaufay etal. (1974).

Membrane Distribution in the P Fraction
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0.00%
PM+IMIM ER oMIM

B % of P Membranes 6.95% 80.11% 12.94%

Figure 11 This distribution of membranes in the P fraction
of Paper 2 is based on a rough estimate based on data
coming from two different sets of animals (Papers 1 & 2)
without the benefit of the R? = 1 equations.

Summary: (Paper2)

e When- forPapers1 and?2 - G-6-Pase
activities are plotted against their predicted
ER surfaceareas, both data sets generated
the same equation withanR>= 1. Sucha
finding offers further evidence in support of
deDuve’s postulates.

e Thedistribution of different membrane
types in the P fraction of rat livers can be
estimated using freeze-fracture,
cytochemistry, and R?> = 1 equations.
However, each estimate produced a
somewhat different result.

Paper 3 (original data): The objective of the
study was to considerthe relationship of ER
membrane surface areas to their constitutive
markerenzyme activitiesin homogenates and
tissue fractions (Bolenderetal., 1980). When
relative amounts of ER marker enzyme activities

were compared tothe surface areas of their
membrane locations, variable distributions
were found for G-6-pase and NADPH
cytochrome creductase (NADPH-CCR), but not
for esterase. G-6-Pase cytochemistry was used
to identify ERmembranesinfractions, butthe
recoveriesindicated that roughly 30% of the
membranes were notbeingdetected (F/H=
95.8%, H/T = 74.06%, and F/T = 70.7%. (Recall
thatin Paper1, the H/T and F/T recoveries
predicted 98% and 93%.)

In summary, the results of Paper 3 offered
evidence both forand against the postulate of
biochemical homogeneity.

Paper 3 (reworked data): In revisiting these
results, we will use the R?=1 equation for G-6-
Pase from Paper1 to predictthe ER surface
areas inthe homogenate and fractions from the
enzyme activity datareportedin Paper3. In
turn, we will use these ER surface areas (based
on G-6-Pase) tointerprettwo other ER marker
enzymes - esterase and NADPH-CCR.

Whenthe R? = 1 equation for G-6-Pase of Paper
1isappliedtothe biochemical data of the
fractionsreportedin Paper 3, we continue to
generate an equation withanR? =1 (Figure 12).
Once again, two different sets of animals having
different body and liver weights share the same
relationship of structure tofunction - more
evidence in support of deDuve’s postulates.

Predicts S(er) from G-6-Pase (See Paper 1)
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Figure 12 When the equation of Paper 1 is used to predict
ER surface areas from the biochemical data of tissue
fractions in Paper 3, the resultis a curve withan R2=1.
Recall that deDuve’s postulates assume such a result.



DoesthisR? = 1 approach everfail? Yes. Ifwe
take the ER surfaces generated above with the
R? = 1 equation of Figure 12 and plotthem
againstthe activities of esterase and NADPH-
CCR, notice what happens. We nolonger getan
R? = 1 outcome. Several data points have left
theregressionlines.
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Figure 13 When the distribution of ER membrane surface
areas is based on G-6-Pase activity and used as a basis for
plotting other ER marker enzymes (esterase, NADPH-CCR),
several points no longer fall on the line and the R falls to
0.9827. Notice that the patterns of the points and the y
intercepts of the two curves are different.

Why did we have success in Paper 3 with G-6-
Pase, but not with esterase and NADPH-CCR?
One explanationto consideris the possibility
that the ER appears homogeneous, butin fact,
it consists of two, slightly different
homogeneities—one forthe SER and another
for the RER. Were this the case, then we would
expecttosee the same distribution pattern for
both the esterase and NADPH-CCR pointsin
Figure 13, beingtied as they both are to the
same G-6-Pase prediction of membrane
surfaces. Clearly, thiswasnotthe case. Biases
and mistakes aside, aremaining possibility may

offera plausible explanation. To wit, all three
enzymes (G-6-Pase, esterase, and NADPH-CCR)
may have homogeneous ERs, butslightly
heterogeneous SERs and RERs.

Since R? =1 equations are good at finding
homogeneities, but not heterogeneities, we
need equations better suited to the task of
detecting heterogeneities. If we write pairs of
linearequationsintwo unknowns and solve
them simultaneously, we can determinethe
enzyme densities (ED = units of activity/
membrane surface) of the SERand RER
membranes (Bolender, 1981). This calculation
should tell usifthese ERmembrane
subcompartments are the same or different.

Since we know the surface area of the SER and
RER in the intact tissue and the total G-6-Pase
activity inthe homogenate forthree animals
(Paper1), we can write three linear equations
consistent with the homogeneity postulate.
This gives us three pairs of simultaneous
equations (animals: 1-2, 1-3, and 2-3) that
Mathematica (Wolfram Research, Inc.) can
solve forus. Asuccessful solution gives pairs of
enzyme densities (ED) - one for SER and another
for RER.

The linearequationsintwo unknowns [ED(ser);
ED(rer)] take the following form:

Animal 1

S(ser) x ED(ser) +S(rer) « ED(rer) = U/g (4)
Animal 2

S(ser) * ED(ser) +S(rer) x ED(rer) = U/g (5)
Animal 3

S(ser) » ED(ser) +S(rer) = ED(rer) = U/ g (6)
where:

ED(ser) = (U/g)/(S(ser)/g)

ED(rer) = (U/g)/(S(rer)/g) .

The equations and solutions appear below.



animal 1:S(ser)-ED(ser) + S(rer)-ED(rer) = U(G-6-Pase)
animal 2:S(ser)-ED(ser) + S(rer)-ED(rer) = U(G-6-Pase)
animal 3:S(ser)-ED(ser) + S(rer)-ED(rer) = U(G-6-Pase)

Mathematicarequires the following format,
wherein x represents the enzymedensity for
the SER and y for that of the RER:

Solve[{1.90x+2.97 y==27.421,1.44x+2.88y ==24.267}, {x, y}]
Solve[{1.90x+2.97 y==27.421,1.96x +2.66y == 26.103}, {x, y}]
Solve[{1.44 x +2.88 y==24.267,1.96x +2.66y ==26.103}, {x, y}]

{{x->5.77267, y -> 5.53971}}
{{x->5.97765, y -> 5.40858}}
{{x->5.85671, y -> 5.49769}}

Notice thatthe values (EDs) for X (ser) are
slightly largerthanthose forY (rer). Ineffect,
the SER and RER are heterogeneous with
respectto one another.

If we substitute the valuesfor Xand Y back into
the equations, we can compare the predicted
values for G-6-Pase to the onesoriginally
measured (Figure 14). Notice thatthe two
values are almostidentical.

S(ser)-ED(ser)+S(rer)-ED(rer) =U/g)

25.000
20.000
15.000

- I I I
0.000

10.000

animal 1 animal 2 animal 3
26.013
26.103

G-6-Pase (U/g Liver)

moriginal (er) 27.421

27.421

24.267

predicted (ser+rer) 24.185

Figure 14 The units of G-6-Pase activity estimated for the
SER and RER in three animals matches the activity of the
ER assayed inthe same animals biochemically.

Since the EDs of the SER and RER appearto
differ by such a small amount, isthe difference
significant? If we runa double tailed tteston
the data and plotthe results, the answerisyes
(Figure 15). Notonly doesa difference exist, it
is highly significant (P = 0.0056).
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Biochemical Homogeneity (within) and
Heteregeneity (between)
. 7.00
L 600
= 5.00
% 400
g 300
S 200
% 1.00
= 0.00
w
X y
M animal 1 577 554
B animal 2 5.98 541
animal 3 5.86 5.50

Figure 15 The enzyme density of the SER is greater than
that of the RER by 7% (P=0.0056). In effect, the
homogeneity of the ER reflects two underlying
heterogeneities.

Notice the ability of enzyme densities (ED) to
define mathematically afundamental concept
of biology —the relationship of structure to
function. They become predictive when plotted
as a linearequation (R?=1), can quantify the
concentration of a given markerenzyme when
it exists atdifferent morphological locations,
and even unfolds the complexity of abiological
change (Bolender, 1981).

Finally, we needto address the key finding of
biochemical heterogeneityin Figure5of Paper
3, which used G-6-Pase cytochemistry to
identify membranes of the ER intissue
fractions. If we recalculate the relative specific
activities (RSA) for G-6-Pase using the enzyme
activities of the fractions and the ER surfaces
predicted from these activitieswiththe R?=1
equation of Paper 1, we find evidencefor
homogeneity, not heterogeneity —at the ER
level. Ineffect, the data of Paper3 now
supportdeDuve’s postulates of biochemical
homogeneity and single location.



Biochemical Homogeneity Test
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Figure 16 The relationship of marker enzyme activity to ER
membrane surface area depends on how the ER
membranes are identified in the four fractions (N, M, L, P).
Cytochemistry detects biochemical heterogeneity, whereas
R2= 1 equations find biochemical homogeneity.

Before leaving Paper 3, we needto tidyupa
few loose ends. Recall thatwhen usingthe ER
surface areas predicted from G-6-Pase activity,
the expected R2=1 equationsfailed to
materialize foresterase and NADPH-CCR (Figure
13). If, however, we use the standard method
for generating these equations (Equation 1,
Table 2, Figure 2), the R? = 1 equations appear,
alongwith recoveries close to 100%. The
recalculated equations are givenin Figure 17.

Relationship of Structure to Function
250.000
y = 46.657x - 2E-10
200.000 RE=1 _A_A,-"
150.000

100.000

ESTERASE (u/g)

50.000

-1.000 000 1.000 2.000 3.000 4.000 5.000

-50.000
ER (m?/g)

Relationship of Structure to Function

y =0.9829x .,’
4.000 Rrz1

NADPH-CCR({u/g)
A
o
38

-1.000 bOOO 1.000 2.000 3.000 4.000 5.000

-1.000
ER (m?/g)

Figure 17 When related to the surface area of the ER, both
esterase and NADPH-CCR display R? = 1 equations.
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Since the intact tissue valuesforthe ER but not
SER and RER were includedin Paper3, enzyme
densitiesforthese locations could not be
calculated, using equations 4, 5, and 6.

Summary: (Paper 3)

e The R? = 1equation for G-6-Pase from Paper
1 predicted the surface areas of the ER in
the fractions of Paper 3 (using data from
three differentanimals) withan R?=1. Such
a result supports the postulates of
biochemical homogeneity and single
location.

o Whenthe predicted er surface areas in the
fractions were plotted against their
corresponding enzyme activities for esterase
and NADPH cytochrome c reductase, the
resulting equations did not display R’s = 1.
This suggested thatthe subcompartments
of the ER —the SER and RER — were
heterogeneous (they had different EDs).

e The SER and RER subcompartments of the
ER were tested for homogeneity by solving
three sets of simultaneous equations. The
results indicated that the SER membranes
had a 7% higher concentration of G-6-Pase
per unit of membrane surface area than
those of the RER.

e |tappearslikely that ER markerenzymes,
such as G-6-Pase, esterase, and NADPH-
CCR, are distributed unequally across the
membranes of the SER and RER. This may
be dueto the presence of ribosomal
attachment sites on the RER consuming
territory that would otherwise belong to the
markerenzymes. This could explain the
lower enzyme concentrations on the RER.



Predicting Biochemistry from
Biochemistry

With evidence in support of the postulates of
biochemical homogeneity and single location,
we can now turnour attentiontothe problem
of assembling predictive networks for
biochemical data—across publications. We
begin the process by identifying quantitative
patternsin biochemical data, using
mathematical markers and connectionratios.

Identifying biochemical patterns: Amar-
Costesecetal., (1974) published an extensive
collection of biochemical assays from the rat
liver, including datafrom tissue homogenates
(E+N) and fractions (N, M, L, P, S). The data set
included assays for 22 different enzymes,
comingfrom hundreds of experiments.

We can use this data setto look for patterns of
similarity. By generatingtriplets (22enzyme
activities taken three atatime), and relating
themto theratios of theiractivities, we can see
the extentto which biology orders its enzyme
activitiesinratliver hepatocytes (Figure 18).
The plot (top panel) suggests thatthe
proportions of one enzyme activity to anotheris
being highly orchestrated by biology. Each
rosette represents a unit of common
connectivity. The enlarged portion of the plot
(bottom panel) shows that the same pattern—
the ratio of three different enzyme activities
(triplets) - occurs many times with many
different groupings of enzymes.
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Figure 18 Top panel: The plot illustrates the connectivity of
22 enzymes in the rat liver. Bottom panel: The
enlargement shows that many different combinations of
enzyme activities frequently share the same proportions.
The central dot identifies a connection ratio, whereas the
surrounding dots represent mathematical markers
(enzyme triplets) sharing that ratio. (Plots derived from
data published by Amar-Costesecetal., 1974.)

If we consider just G-6-Pase and its relationship
to the remaining 21 enzymes, we can see how
one enzyme fitsintothe larger picture of
biological complexity (Figure 19). These
repeated patterns -an expression of
stoichiometry —identify the downstream



expressions of geneticactivity. Although these
patterns signal the presence of underlying
biological rules, how does biology know when
and where to applythem? Where dothese
rules come from? Are they coded somewhere?

ghpase1aldoasef00alkapdiestase11000 g6pase1rnab00galatransase1000
g6pasetaldoase600cytob51000 gBpaseirnaB00cytop4501000

gBpasetaldoaseB00cytoox1000 gBpase1mab0cytoox1000

ngasMadmaseﬁDDcympMSmﬂﬂ\\ //
— L

part1part600part1000

N>

g6pase1rna600cytob51000

gbpaseialdoasefl0galatransase1 000 gbpaseirnat0alkapdiestase11000
gbpaseglutsynase600alkapdiestasei 1000 gbpase1glutsynasef00galatransase1000
gBpaseglutsynase600cytob51000 gbpase1glutsynase600cytop4501000

gbpaselglutsynase600cytoox 1000

Figure 19 Top panel: The plot shows the relationship of G-
6-Pase to the remaining 21 enzyme activities (original data
from Amar-Costesec et al., 1974). Bottom panel: The
rosette in the upper left corner of the top panel is shown
with the mathematical markers (periphery) and connection
ratio (center) replacing the points. Enlarge as needed.
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Predicting enzyme activities: If, as seenin
Figures 18 and 19, the enzymesinliver
hepatocytes are related to one anotherasa
ratio of theiractivities, thenthe activity one
enzyme could be expected to predict the
activities of otherenzymes. Toassemble sucha
network, asillustratedin Table 4, we can once
again use the published dataset of Amar-
Costesecetal., (1974) and choose G-6-Pase as
our reference enzyme (the denominator of the
predictionratios). Inturn, we can testthe
effectiveness of such anetwork by usingit to
predict the biochemical results of Papers 1,2,
and 3 from the activity of a single enzyme
activity (G-6-Pase =27.42) enteredinto Table 4
— the highlighted value.

Table 4 When expressed as ratios of G-6-Pase activity, the
resulting network of enzyme data becomes predictive.
Note that the table uses the published data of Amar-
Costesecetal., Table Il; (1974). Avalue entered for G-6-
Pase will predict values for itself and for the remaining
enzymes listed in the table. The test (observe vs. predict)
was applied to enzyme data of Papers 1, 2, and 3, as
shown in the following figures. To run a test, enter a value
for G-6-Pase (e.g., 27.42) into the data entry field
(highlighted) and press Enter. The results are plotted in
Figure 20.

Enzyme Location G6Pase=1 27.42 Observe Predict
5'-nucleotidase pm 0.559 15.34 15.83 15.34
acid phosphatase lysosome 0.281 7.70
aldolase cytoplasmic 0.394 10.81
alkaline phosphatase pm 0.121 3.33
alkaline phosphodiesterase 1 pm 0.866 23.75
aminopyrine demethylase er 0.004 0.11
b-glucuronidase lysosome 0.058 1.59
catalase peroxisome 2.356 64.61
cytochrome b5 er 0.950 26.06
cytochrome oxidase imim 0.936  25.66 19.65 25.66
cytochrome p 450 er 1.074  29.46
esterase er 12.723 348.86
fumarase mi 4.733  129.77
galactosyl transferase golgi 0.001 0.02
glucose-6-phosphatase er 1.000 27.42 27.42  27.42
glucuronyltransferase er 0.118 3.23
glutamine synthetase mi 0.426 11.69
monoamine oxidase omim 0.025 0.69 0.64 0.69
n-acetyl-b-glucosaminidase lysosome 0.341 9.34
nadh cytochrome creductase  imim 4.950 135.74
nadph cytochrome creductase er 0.197 5.40
nucleoside diphosphatase golgi 4.950 135.74 J

For a prediction to be successful, it should
generate an equation —comparing observed to
predicted values—withanR? = 1. Once again,
the curve should pass throughthe origin—or
nearlyso. As shownin Figures 20 and 21, most,



but notall the enzymesin play metthese
conditions.

Paper1l
Paper 1: X # Y and RZ Not Close to 1
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Figure 20 The biochemical data observed and predicted in
Table 4 are plotted with four (top) and three enzyme
activities. When the cytochrome oxidase point (25.66) is
excluded, the equation displays a R? close to one (0.9995).
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Figure 21 Once again, removing cytochrome oxidase
brought the R? close to one (0.9996).
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Paper3

U/g Predicted from G-6-Pase Activity - Paper 3
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Figure 22 For Paper 3, the biochemical predictions worked
for only two of the three marker enzymes. The esterase
inconsistency cannot be explained.

Why did some predictions work, but others
not? Asa practical guideline, predictions for
enzyme activities that can be confirmed with R?
= 1 equations are the ones most likely to be
credible.

The fact that the data of one publication (Amar-
Costesecetal., 1974) was successfulin
predicting the data of several otherstudies
(Papers1-3) representsapreliminary, but
promising outcome. Cytochrome oxidase,
however, failed tofitinto the expectedR?=1
patternit displayedin Papers 1and 2. Why?

Recall that cytochrome oxidase is attached to
the inner mitochondrial membrane, butis
derived from both mitochondrialand nuclear
DNA (Youfenetal., 2016). By havingto serve
two sets of rules (mitochondrial and nuclear
DNA), itbecamesanoutlier. Assuch, it doesn’t
belongtoan R? = 1 equation made up of
enzymes derived wholly from nuclear DNA
(Figures 20 and 21).

Summary (Predicting Biochemistry from
Biochemistry):

e Therelationship of one enzyme activity to
anotheris defined by a ratio.

e Ratios of enzyme activities display predictive
properties with R? = 1.



e Although biochemicalnetworks are largely
underthe controlof nuclear DNA,
mitochondrial DNA can also bein play.

e The cytochrome oxidase system —a marker
enzyme forthe inner mitochondrial
membrane - is controlled by both nuclear
and mitochondrial DNA.

Predicting Morphology from
Morphology

Predicting morphological surface areas: Using
the approach just described for biochemistry,
we can also predictthe amounts of membrane
organellesincells(e.g., hepatocytes). Recall
that thisis possible because biology defines the
relationship of one partto another
quantitatively with ratios.

Figure 22 plots two sets of membrane surface
areas - animal 1vs. animal 3 - from Paper 1.
Notice thattheyfita line withanR?close to 1
(0.996) that passes roughly through the origin
(0.0116) — properties consistent with
biochemical and biological homogeneity.

8 Hepatocyte Organelles: Relative to ER Surface (Paper 1)

1.20

y=0.9653x + 00116
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Figure 23 Surface areas of eight organelles are divided by
the surface area of the ER for each of two animals. The
plot with an R? = 0.9958 suggests that the two animals
contain the same relative amounts of hepatocytic
organelles.

In turn, the data of animals 1 and 3 of Paper1
(Figure 23) were averaged and used to
assemble aninteractive prediction table (Table
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5) — analogoustothe one usedin Table 4 for
biochemistry.

Table 5 When a value for the ER is entered (highlighted
field-4.87), values for the remaining membrane
organelles are predicted. When compared to the observed
data of a single animal (Paper 1), they show close
agreement — as expected (recall Figure 23).

Location m’/g 4.87 Observe Predict % (O/P)

er 1.000 4.870 4.870 4.870 100%
ser 0.407 1.983 1.900 1.983 96%
rer 0.593 2.887 2970 2.887 103%
go 0.039 0.192 0.151 0.192 79%
pm 0.109 0.533 0.537 0.533 101%
mim 0.788 3.837 3.900 3.837 102%
omim 0.207 1.007 0.993 1.007 99%
imim 0.581 2.831 2910 2.831 103%
sum 18.231 18.140 101%,

The advantage of such organelle prediction
tablesisthat they derive fromthe order biology
createsin cells with its well-defined ratios.
Moreover, such prediction tables, which can be
assembledinafew minutes, generate large
amounts of new data quickly and cost-
effectively. Withjustan estimate forthe ER
surface area, for example, we could readily
predictsurface areas for a panel of other
organelles—suchas those listedin Table 5. In
turn, we can translate the membrane surface
areas into enzyme activities.

ConsiderPaper3. There were only two
estimatesreported forthe intacttissue (ERand
total membranes). If we use Table 5 and enter
avalueforthe ER for each animal, we can
predictthe missing data (Golgi, plasma
membrane, and mitochondrialmembranes), as
showninTable 6. Inturn, we can check the
predictions by calculating recoveries that
compare observed to predicted values (sumvs.
observed)—e.g., 8.77/9.49 = 92.4%.

Table 6 When a value from Paper 3 is entered for the ER,
the table predicts surface areas for the Golgi, plasma
membrane, and mitochondria. When the sums of the
membrane surface areas are compared to the published
totals, the recoveries ranged from 92 to 97%. Such results



suggest that the animals in Papers 1 and 3 are reading the
same blueprint when populating hepatocytes with
organelles.

Location Animal2 Animal3 Animal 4

er 4.53 4.31 4.62
g0 0.18 0.17 0.18
pm 0.50 0.47 0.51
mim 3.57 3.40 3.64
sum 8.77 8.35 8.95
observed 9.49 8.95 9.22
recoveries 92.4% 93.3% 97.0%,

Summary (Predicting Morphology from
Morphology):

e Thesurfaceareasof membraneorganelles
relate to one another as ratios.

e Membranesurfaceareas can be predicted
from ratios of membrane surface areas.

Biological Homogeneity

If the geneticcodingforthe liver has remained
largely unaltered overtime, then the down-
stream relationships of structure to function
should be conserved similarly across animal
species. Ineffect, homogeneity in the genotype
would be expectedto predict homogeneityin
the phenotype.

To test this postulate of biological homogene-
ity inthe phenotype, we need to show thatthe
patternsand rules detectedinratliver
hepatocytes continueto exist-largely
unaltered-inthe hepatocytes of otherspecies.

At this point, our job becomes more difficult
because the assumptions of experimental
uniformity enjoyedin Papers 1to 3 - animal age
and sex, fasting, sampling, and exposure - often
no longerapply. Although comparing the data
of one speciestothat of another continuesto
require acomparable amount of preprocessing
(sectionrelated corrections and
standardization), the data published for humans
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and otherspeciestendto be sparse and often
incomplete forour purposes here. This means
that the generalizing arguments made earlier
with R?2 =1 equations will be replaced by those
based on the available dataand predictions
(Note thatthe calculations are giveninthe
Appendix). We begin by looking forsimilarities
in hepatocyticorganelles between humans,
rats, and dogs in four papers.

Koch, M. M. et al., 1978, A stereological and
biochemical study of the human liverin
uncomplicated cholelithiasis: The main point
of the firstexampleisto show that we can start
with a single data point—biochemical or
morphological - and end up with largely the
same results. Suchan outcome would be
expected when the same rules are in play.

Using human biopsy specimens, Kochetal.,
(1978) reported membrane datarelated to the
cytoplasm of hepatocytes. These datawere
converted toa gram of liver(onthe assumption
that the hepatocytic cytoplasm represents 71%
of the livervolume and that the human liverhas
a density of 1.07 g/cm?3) and corrected for
sectionrelated artifacts (see Tablelll of Paper
1). The results (human datafororganelle
surface areas per gram liver) were plotted
against comparable datafrom the rat, which
were predicted fromthe human value forthe
ER usingthe equations of Paper1 (Figure 24).
Notice that the results were roughly similar
betweenthe twospecies forthe ER, plasma
membrane (PM), and outer mitochondrial
membrane (OMIM), but not forthe inner
mitochondrial membrane (IMIM) —the
perennial outlier.



Organelles - Human vs. Rat - Related to ER
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Figure 24 Surface areas of organelles in human
hepatocytes are compared to those in the rat, which were
predicted from the human biopsy estimate for the ER
surface area using the data of Paper 1. The results -
espressed relative to the surface area of the ER ineach
species —show similar patterns —except for the inner
mitochondrial membrane . (Data adapted from Koch et
al., 1978 and Paper 1)

Next, we can use the one enzyme activity
reportedinthe Koch paper (NADPH-CCR) to
generate asecond set of estimates, usingthe
biochemical datacomingfromthe rat liver.
Since the assay for NADPH-CCR came from a
microsomal (P) fraction, it was scaled up to the
homogenate on the assumption thatthe P
fraction contained 63% of the total activity (see
Table lll of Paper3). Next,apredictiontable
like the one shownin Table 4 was assembledfor
NADPH-CCR (now expressed as a homogenate)
by dividing all the enzyme activities by that of
NADPH-CCR. This generated alist of marker
enzyme activities forthe human liver (using the
data of Amar-Costesecetal., 1974; Table Il)
adjusted to the expected proportions. Inturn,
these predicted markerenzyme activities were
used to predicttheircorresponding membrane
surface areas— inthe intacttissue - using the R?
= 1 equations of Paper 1. In short, a single data
point- a microsomal estimate for NADPH-CCR -
was used to predict membrane surface areas
(homogenate)forthe plasmamembrane
(5’Nucleotidase), outer mitochondrial
membrane (MAO), andinner mitochondrial
membrane (CyOx); see Table 8. The results,
which appearin Figure 25, are once again
expressed relative tothe ER surface area. They
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suggestthatthe R? = 1 equations from the rat
did a much betterjob at predictingthe ER, PM,
and OMIM in humans than forthe IMIM.

Organelles - Human vs. Rat - Related to ER
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Figure 25 The second prediction —based on the biopsy
estimate for NADPH-CCR- resembles the first (Figure 24).
(Data adapted from Koch et al., 1978, Amar-Costecet al.,
1974 — predicted marker enzyme activities, and Paper 1 —
predicted membrane surface areas from predicted enzyme
activities.)

By includingmembranesurface areasand a
single enzyme activity (NADPH-CCR), the Koch
paperoffered several options for reworking the
data withinthe framework of biological
homogeneity. The patterns displayed by
Figures 24 and 25 show that predictions based
on either morphologyorbiochemistry can
produce surprisingly similar outcomes - even
when theyrelied on data coming from two
(Figure 24) or three (Figure 25) different papers.
This suggests that the biology literature
contains research data quite capable of playing
by the same rules. The large discrepancy seen
for the surface area of the inner mitochondrial
membrane is consistent with the results seen
earlierforthis outlier (Figures 20, 21).

Roessner, A. et al., 1978, Ultrastructural
MorphometricInvestigations on Normal
Human LiverBiopsies: In this paper, we
considera second set of membrane data
comingfromthe human liver. Biopsiesfrom 14
normal adults (male and female) were used to
estimate the surface areas of hepatocytic
organelles. The raw estimates were corrected
for sectionrelated biases (see Paper1),



convertedtoa gram of tissue, and, inturn,
expressed as proportions [S(Organellei/S(ER)]
(Figure 26-top), and then as concentrations
(m?/gliver) (Figure 26-bottom).

Organelles - Human vs. Rat - Related to ER
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Figure 26 When expressed as ratios relative to the ER, the
patterns of hepatocytic organelles in humans and rats
display remarkably similar patterns (top). However, when
expressed per gram of liver, the fed humans display only
about half the membranes seen in fasted rats (bottom).
(Data adapted from Roessneretal., 1978 and Paper 1)

Figure 26 indicates that organellesin human
and rat hepatocytes occurinroughly the same
proportions relativeto the ER (top), but, when
related toa gram of liver, the fasted rat
contains roughly twice the amount of each
organelle. Why? Giventhe homogeneity
postulate, we could readily attribute similar
ratios to similar DNA, but the m?/g data offer
more of a challenge. Notice thatthe rats were
fasted, butthe humans not. Glycogen stores,
which account for about 20% of the cytoplasmic
volume in hepatocytes, disappearin fasted rats.
This meansthat a fasted gram of liverwould
have had to increase by 20% the number of
hepatocytes contained therein to weigh one
gram. However, this still leaves 80% of the

difference unexplained. Now let’s try a basic
metabolicrate (BMR) argument. The BMR
(cal/kg/day) of ratsis about 96 and that of
humans 25 (Holliday, 1967) — a difference of
roughly4to 1. Thissuggeststhatthe rat with
its higher metabolicrate would requirealiver
capable of delivering more energy —per gram.
Consequently, we would expect the hepatocyte
to contain more of everything, including ER,
mitochondria, et cetera—all in keeping withits
expected ratios (see, forexample, Table5). In
effect, the BMR argument could readily account
for the elevated organelles shownin Figure 26
(bottom).

A lessonto take from Figure 26 is one of
perception. The same datasetcan be
interpreted as a consistency (top) oras a
inconsistency (bottom). Note thatratios detect
rules, whereas absolute values and
concentrations (e.g., m?/g) appearto be
detectingrules adaptedtoagivenspecies
(humanvs. rat) or to a local set of conditions
(fedvs. fasted).

In summary, Figure 26 (top) suggests that both
humans and rats share a common blueprint, but
that the blueprint comeswith an ability toscale
(Figure 26 (bottom). Both findings, however,
are consistentwith the postulate of biological
homogeneity.

de-la-Iglesia, F. A. et al., 1976, Quantitative
microscopic evaluation of morphometry of the
endoplasmicreticulumin developing human
liver: Biopsiestaken from the livers of male and
female volunteers —ranginginage from 10 to
18 years— are compared to values coming from
adult male rats (Paper1) infigure 27. One
group was fed, the othernot. Although the
patternfor the ER and Golgi were similarin
both species, it was different for the SER and
RER.



Organelles - Human vs. Rat - Related to ER
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Fasted Rat 1 062 038 0.04

Human/Rat 100% 58% 147% 86%

Figure 27 With corrections applied, the surface areas of the

ER and Golgi displayed similar distributions, whereas those
of the RER and SER did not. (Data adapted from de-la-
Iglesiaetal., 1976 and Paper 1)

Hess, F. et al., 1973, Morphometry of the Dog
Liver: Normal Base-Line Data: InFigure 28,
biopsies obtained from4adultfemale dogs
(fed) were compared to the adult male rats
(fasted) of Paper 1. The comparisonsuggestsa
similar pattern forthe ER membranes, but once
again not for those of mitochondria.

Organelles - Dog vs. Rat - Related to ER

S(Organelle i)/S(ER)

08
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02
0 L
er rer ser mim
® Fed Dog 1 0.46 0.49 0.17
Fasted Rat 1 0.62 0.38 0.85

Dog/Rat 100% 75% 128% 20%

Figure 28 When corrected and expressed relative to the
surface area of the ER, the ER of both species appear
similar, but not the membranes of mitochondria. (Data
adapted from Hess etal., 1973 and Paper 1)

Summary: (Biological Homogeneity)

e R?=1equationsand predictive ratios
(biochemicaland morphological) can be
similar within and across animalspecies.

e The absolute and relative amounts of cell
organelles would appearto be under
separate controlmechanisms.
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e Theinner mitochondrialmembrane —under
dual DNA control- continues to behave as
an outlier.

DISCUSSION

Overview

The report focused on two sets of homogeneity
postulates, the first well-established and the
second an extension of the first. Both sets
serve to define the relationship of structure to
functioninliving organisms. By expressing this
relationship mathematically (Equations 1and
2), we begin the process of usingthe phenome
— the downstream product of DNA — to predict
and unravel upstream events.

The incentive for pursuing ageneral solution to
the homogeneity postulates came fromthe
finding of molecular biology that different
species share remarkably similar oridentical
blueprintsfor many of their parts. From this it
was reasoned that animal species must be
subjectto many —if not most - of the same
rules.

Since we already know from earlier work with
ratios that biology operates by rule (Bolender,
2011 to 2016), the problem became one of
identifyinga mathematical model capable of
predicting events - consistent with areality
defined by biology. Giventhe understanding
that predictionin biology requires equations
withR?2 =1 (Bolender, 2003) and given the
model previously defined by deDuve’s
postulates, findingasolution consisted largely
of reworking published data.



Postulates of deDuve

The postulate of biochemical homogeneity
statesthat the members of a given population
[ina cell] have the same biochemical
composition. This meansthata given amount
of membrane surface area can be expectedto
define agiven amount of markerenzyme
activity. Ineffect, the postulate tacitly assumes
a quantitative relationship between structure
and function, asdefined by Equations 1and 2.

If we assume the postulates of deDuve’s to be
correct, then we would expectto find atable of
equations with R?s =1 covering a wide range of
cell organelles. Table 7 providessucha
supportingdocument. Notice thatthese
equations capture rules that biology has
defined asratios. Does this meanthatbiology
encodessuchrulesinits DNA or do the rules
come from recipes thatbiology can change as
the needarises?

Table 7 Biochemical homogeneity allows us the predict
enzymes from surfaces and surfaces from enzymes. In
effect, relationships of structure to function become
mathematically interchangeable. (Data adapted from
Papers 1, 2, and 3).

X UNITS Y UNITS| EQUATION R’=
S(ER) U/G |G-6-Pase M%/G |Y = 5.9625X| 1
G-6-Pase U/G [S(ER) M*/G |Y =0.1677X| 1
S(ER) U/G |Esterase M’/G | Y = 46.657X| 1
Esterase U/G |[S(ER) M/G |Y =0.0214X| 1
S(ER) U/G |NADPH-CCR| M%/G |Y = 0.9829X| 1
NADPH-CCR| U/G |S(ER) M%/G |Y = 1.0174X| 1
S(OMIM) U/G |[MAO M?%/G |Y = 0.6310X| 1
MAO U/G |S(OMIM) | M?/G |Y = 1.5848X| 1
S(IMIM) U/G |CYOX MY/G |Y = 6.8150X| 1
CYOX U/G |S(IMIM) M%/G |Y =0.1467X| 1
S(PM) U/G |5'NUC M%/G |Y = 26.267X| 1
5'NUC U/G [S(PM) M/G |Y = 0.0381X| 1

Why didittake solongto uncovertheR?=1
rules? By reporting research data as averages,
we effectively forfeited the data of individual
animals, which - as shown here - were needed
to generate these equations (Table 1vs. Table
2).
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Reproducibility

Revisiting the homogeneity postulate would
seema timely exercisein view of the ongoing
reproducibility crisisin biology (Baker, 2016).
What needsto be done? Find out what’s not
workingandthenfixit. Let’slook at a worked
example tosee how this approach can be
applied to biochemistry.

Giventhe mathematical orderassumed by the
postulate of biochemical homogeneity, why can
we predict enzyme activities from relative ratios
(Table 4), but not from absolute values? This
guestion became anissue when several
published values werefound to disagree with
those of Amar-Costesecetal., 1974; Table ).
Why did they disagree?

Considerthis. If we relate enzyme activitiestoa
mg of protein reference that varies from paper
to paper, then this variation can be expectedto
affect the values reported forthe enzymes. In
effect, the mgproteinreference representsa
variable. Whatwould happen, forexample, if
we standardized ourassays —across
publications - to the same amount of protein?
Might disagreement suddenly become
agreement? Giventhe plotshowninFigure 29,
the answerappearsto be yes. Now most of the
biochemical results can be replicated.



Amar-Costesec et al., 1974 vs. Literature
2500.00

50.00
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Figure 29 When enzyme assays are related to the same
amount of protein, absolute values tend to come closer
together.

Summary

e The relationship of structure to function
exists as a biologicalrule (Equations 1and
2), which can be captured with R? = 1
equations.

e Biology defines its precision and accuracy
oneorganismata time.

e Biochemical data can be standardized to a
given amount of protein across publications.

Postulate of Biological Homogeneity

The postulate of biological homogeneity
assumes thatthe same geneticinformation
(DNA) produces the same parts withinand
across animals. Inotherwords, R? =1
equations derived from the cells of one species
applyto all those species carrying the same
DNAsequences.

Evidence in support of this new postulate came
from deDuve’s postulates, which were shown to
apply repeatedlywithin asingle species (Table
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7) and often across multiple species (Figures 24-
28).

Perhapsthe strongest supportforthe postulate
comesfrom Figure 26 (top panel). The patterns
displayed by the hepatocytes of human and rat
livers were clearly similarfor five of the six
organelle ratios.

Summary

e Fquations 1 and 2 and strings of ratios can
predict outcomes within and across animal
species.

o When attempting to compare data collected
fromsubjects under widely different
conditions (e.g., age, sex, exposure,
sampling, nutritionalstate), inconsistent
results are to be expected.

e Using enzyme densities expressed as R? = 1
equations, both the structure and function
of a cell can be reconstructed from a single
data point with data coming from different
species.

Enzyme Densities (ED)

Enzyme densities were used throughout the
reportto define relationships of structure to
function, to detect patterns of biochemical
homogeneity, and to predict data points. In
effect, they are provingto be an effectivedata
type for managing a wide range of complexities.

Enzyme densities offer the promise of moving
events occurringinthe phenome one step
closerto theirantecedentsinthe genome.
Recall that DNA microarrays can tell us what
RNAs are beingexpressed, butsuch RNAs are
still many steps removed from their final
productsin the cell. Thisis where enzyme
densities and stereology can play an important
role by fillingin the missing dots. Translating
gene expressionintochanges expressed at the
level of cellularmembranes, forexample, is



goingto require detailed information about (1)
changesin membrane surfacesareas, (2)
changesinthe packingdensities of moleculesin
the membranes, and (3) changesinthe rates of
membrane turnover. Such information should
prove invaluableas we beginto generate
complexities parallel tothe ones existingin the
genome.

Equations4, 5, and 6 and theirmethod of
solution mightalso be telling us something
aboutthe basicstrategy of living systems. Since
the simultaneous solution to pairs of linear
equationsisakintolinear programming, an
enzyme densitymay representan optimal
solutionto the problem packingenzymesin
membranes, one that provides specific
advantagestoan organism. In effect,
optimization may explain adaptability.

The biggest surprise, however, was how quickly
enzyme densities and theirR?=1 equations
triggered the transition to prediction. Starting
with control data, we can now do all the
following.

e Predictmorphology from biochemistry.
e Predictbiochemistry from morphology.
e Predict morphology from morphology.

e Predictbiochemistry from biochemistry.

It will be interestingtosee how longit takesto
repeatthese predictionsin experimental
settings when so many parts are changingat
the same time.

First Principles (Rules)

To the list of rules started earlier (Bolender,
2016; Page 100), we can add four new ones.

Structure to Function Rule: Biology defines
relationships of structure to function within
tighttolerances, as shown by equations with R?
=1
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Prediction Rule: Predictionin biology requires
data fitted toequationswithR?>=1 orR?= 1.

Amounts Rule: Biology definesthe relative
amounts of its parts (e.g., molecules,
organelles, cells, etcetera) with well-defined
ratios, but allows theirabsolute amounts to
vary markedly.

Mitochondrial Discontinuity Rule:
Mitochondrial parts and theirrelationships of
structure to function can be defined by genetic
coding coming from both nuclearand
mitochondrial DNA. Consequently, rules
defined by nuclear DNA may not apply.

Bias, Contamination, and Average
Data

When running-in parallel - morphological and
biochemical experiments within the framework
of analytical fraction, identifying sources of
error (biasand contamination) and applying
corrections was central to the experimental
design of Papers1to 3.

Estimatesfor membrane surface areas, for
example, carry biases determined by the sizes
and shapes of the membranes relative to the
sectionthickness. Moreover, the same
membrane organelles come with one set of
biasesinthe intacttissue, but the same
membranes assume an entirely different set of
biasesin each of the five consecutivetissue
fractions. Thisrequiredthe application of
corrections forthe section related biases prior
to calculating the morphological recoveries
(Paper1l).

The liveritself can become amajorsource of
contaminationinthatitcontains cells other
than hepatocytes (e.g., endothelial, fat-storing,
and Kupffercells). Contributions fromthese
contaminating cells can be avoided when
estimating membranesurface areasin the



intacttissue by simplyignoringthem, but thisis
not the case inthe tissue fractions. As
describedin Papers 1,2, and 3, the stereological
estimates had to be corrected for both related
biases and cell contaminations. Overestimates
for membrane surface areas were corrected
accordingto Weibel and Paumgartner (1978)
and the extra-hepatocytic contaminations were
accounted for using the data of Blouinetal.,
(1977).

Figures 30 and 31 tell the bias story most
effectively. The uncorrected data of Figure 30
leads tofailure (R?# 1 and the curve misses the
origin), whereas the corrected data (Figure 31)
leads to success (an equation witha R? = 1 that
passes through the origin). Giventhe Weibel-
Paumgartner corrections, we now have R?= 1
equations, an empirical proof forthe postulates
of deDuve, prediction, and amathematical
strategy for advancing toward the genome.

Surface Area Biases - Not Corrected

35.000

y =3.7564x + 4.6016
R*=0.9708 e®
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Figure 30 Stereological estimates for membrane surface
areas —uncorrected for section related biases — produce
unusable results. Compared to corrected data in Figure 31,
the slopes differ by 59% (5.9625/3.7564).
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Relationship of Structure to Function
35.000
y = 5.9625x - 0.0063

RE=1 =
25,000 1

30,000 °
20,000
15.000

10.000

G-6-Pase{U/g)

5.000
0.000,
1.000 5 {2000 000 1.000 2.000 3.000 4,000 5.000 6.000
' ER (m?/g)

Figure 31 When corrected for biases according to Weibel
and Paumgartner (1978), stereological data - in
combination with biochemistry - provide ready access to
otherwise undetectable relationships of structure to
function in biology.

Although Figure 31 and several similar plots
were neededto support the biochemical
homogeneity postulate, we have yetto address
the practical problem of havingto deal largely
with published data expressed as averages.
What can we do? The simplestsolution would
be to plotenzyme densities (ED) asR?=1
equations. If, forexample, we average the data
giveninTable 4 and divide the average units of
activity by the average surface area, we get an
ED of5.9611. When expressed as astructure-
function equation, we have:

Y = 5.9611X . (5)

Notice thata plotof equation 5 (Figure 32)
producesa curve that isalmostidentical to the
oneshowninFigure31: Y=5.9611X vs.Y =
5.9625X. Thisoption of beingable to generate
aR?=1 equationfromasingle point (ED), will
become invaluable as we continue to predict
our way into biological complexity.




R? = 1 Equation from Averages
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Figure 32 Given an enzyme density (ED), a R2= 1 curve
passing through the origin can be readily generated.

Concluding Comments
In terms of the big picture, where are we?

Since DNAislinkedto genes, genesto
molecules, moleculesto organelles, organelles
to cells, andcells .... to organisms, we know that
connectivity is fundamental to understanding
biology. Insolvingthe biology puzzle, we want
to be able to connectits morphological and
biochemical partsand then use relationships of
structure to function to create pathways
capable of shuttling information back and forth
between DNA and its products distributed
throughout all parts of the phenotype. This
processis now underway.

What have we learned so far?

We know that we can use stereology to
guantify morphology, biochemistry to quantify
molecules, and published datato discover that
biology usesratios asits central organizing
principle. Bytappingintothis principle, we can
explore biology with patterns (mathematical
markers, connection ratios), which, in turn, can
direct us to biological rules—often expressed as
R? = 1 equations. Inturn, these equations,
which bring diagnosis and predictionintothe
game, will play an essential role as we beginto
explore the ways in which biology responds and
adaptsto adversity.
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Why is this new approach to analyzing data
immediately important to biology?

Since we have now begun the process of
modifying our human genome with CRIPSR,
havinga robust feedback loop from the
phenotype —one based on empirical dataand
biological principles—becomes an essential
ingredientforsuccess and perhaps evenfor
survival.

Whattype of game are we playing?

There are two types of games we can play with
biology: zero-sum (win-lose) and nonzero-sum
(win-win orlose-lose). Although the win-win
option would appearto be the most promising,
itisrarely usedinbiomedical research because
the cost of entryistoo high. It requires shifting
to a theory structure consistent with biological
complexity. By prototyping suchatheory
structure, the Enterprise Biology Software
Project has been playinganon-zero-sum game
(win-win) successfully for several years. Since
biology already knows the answers to most of
our questions, the strategy behind ourgame
planis quite simple. Whenever we constructa
parallel complexity correctly, biology promptly
answers our questions. Ineffect, we’re using
the parallel complexityas a communication
device, wherein mathematicsisthe common
language.

Prediction is the game changer...
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