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SUMMARY 
 

Given the encouraging results reported last year for membrane surface areas, we now have the 

incentive to look for specific mathematical links between morphology and biochemistry.  We also know 

from textbooks on molecular cell biology (Alberts et al., 2014; Lodish et al., 2016) that genomes across 

animal species display remarkable similarities.  In fact, many biological parts in different animals display 

what appear to be identical DNA sequences.  This raises an interesting question.  If different animals 

share the same DNA coding for given part, do such parts also share the same phenotype?  The report 

this year attempts to answer this question by making two assumptions.  The first of these assumes that 

the postulates of deDuve (biochemical homogeneity and single location) are correct, while the second 

one assumes that equations based on these postulates have the power to predict experimental 

outcomes.  Since we already know from an earlier report (2003) that predicting outcomes in biology 

requires equations with R2 = 1, our task becomes one of identifying relationships of structure to function 

using equations capable of fulfilling the requirements of prediction and the homogeneity postulates 

(deDuve, 1974).  If successful, we will have an answer to our question and perhaps the beginnings of a 

new strategy for shuttling data back and forth between the phenome and the genome.  As the story 

unfolds, we will have to decide – repeatedly - how to access a highly organized and complex biology 

using data taken from a highly eclectic and disconnected literature.  Consequently, prediction often 

comes to our rescue.  This will include predicting morphology from biochemistry, biochemistry from 

morphology, morphology from morphology, and biochemistry from biochemistry.  Since the report 

consists largely of reworking the original data of published studies, calculation worksheets are included 

in the Appendix as Excel (Microsoft, Redmond, WA) and Mathematica (Wolfram Research, Champaign, 

IL) files.  The report in its entirety is available online (playingcomplexitygames.com).       

 

INTRODUCTION 
 

A postulate is a statement assumed to be true 

without proof - existing as a self-evident, basic 

principle.   

In this report, we consider two such postulates.  

They come from the relationship of structure 

and function and serve to connect cell to 

molecular biology.  The story of these 

postulates will be told with equations derived 

from biology by way of the biology literature.     

Let’s begin.  If the relationship of structure (S) 

to function (F) is linear, then the slope (𝑚) of 

the curve defines this relationship as:  

𝐹 =  𝑚𝑆      (1) 
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𝑆 =  𝐹/𝑚    (2) 

where 𝑚 =  ∆𝑦/∆𝑥 . 

Notice that the slope defines each rule as a 

ratio (𝑚 = 𝐹/𝑆 or 𝑚 = 𝑆/𝐹).  By becoming 

familiar with such rules, we can use them to 

predict data and patterns that don’t currently 

exist in the literature.  In effect, prediction 

becomes a new problem-solving tool.      

 

The Strategy 

The report introduces the postulate of 

biological homogeneity, which states that 

biological parts derived from the same 

instructions in the genome display the same 

relationships of structure to function in the 

phenome.  In effect, this means that the 

equations defining a biological part, such as the 

liver, apply equally well to livers of similar and 

different animal species – when they carry the 

same set of genetic instructions.   Before we can 

test this new postulate, however, we must first 

verify the two biochemical postulates of 

deDuve (1964, 1974), which serve to define the 

relationship of structure to function in biology.   

The postulate of biochemical homogeneity 

states that members of a given population have 

the same biochemical composition, whereas 

the postulate of single location assumes that 

each constituent [marker enzyme] is restricted 

to a single intracellular site.  In short, enzymes 

(biochemical constituents) are uniformly 

distributed at unique cellular locations 

(morphological components).   

For convenience, we will pursue an approach 

largely unfamiliar in biology, wherein published 

experimental data will be fitted to equations 

displaying R2s = 1 and, in turn, used to predict 

outcomes (equations) with similar R2s.  Why R2s 

= 1?  With such equations, structure and 

function become interchangeable wherein one 

can predict the other.     

To this end, we will direct a series of questions 

to data sets coming from several different 

publications.  For example, does biochemical 

homogeneity exist in the hepatocytes of rat 

livers?  Are marker enzymes restricted to a 

single cellular location?  Do livers display 

biological homogeneity?  Why is prediction 

indispensable?  What does it take to play a win-

win game with the biology literature?     

 

The Process 

Several years ago, we attempted to confirm the 

postulates of deDuve by combining morphology 

(stereology, freeze-fracture, and cytochemistry) 

with biochemistry (analytical fractionation and 

enzymology) – (Blouin et al., 1977; Bolender, et 

al., 1978; Weibel and Paumgartner, 1978; Losa 

et al., 1978; Bolender, et al., 1980).  By 

calculating recoveries, we could show that both 

morphology and biochemistry were largely 

conserved.  Instead of confirming biochemical 

homogeneity, however, the data suggested 

biochemical heterogeneity.  Moreover, the 

postulate of unique location was left untested.   

But why try again?  The difference between 

then and now is that our prospects for success 

are much improved.  We now have three new 

clues -  one from the 2003 report (prediction 

requires R2 = 1), one from the 2016 report 

(reproducibility exists within and across cells 

and animals), and one from molecular biology 

(biological parts - e.g., cells and organs - can 

share remarkably similar genetic coding within 

and across species).  Since it seems likely that 

biochemical homogeneity exists (based on the 

genetic evidence alone) and since we have a 

strategy for finding it (R2 = 1), we can approach 

the homogeneity problem as a mathematical 

puzzle.  Moreover, we can add a measure of 

confidence by conceding at the outset that our 

solutions do little more than mimic solutions 

that already exist in biology.  This strategy, 
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which consists of creating parallel complexities, 

always seems to work provided we get biology’s 

approval.  Prediction and reproducibility signal 

such approval.      

Our first job becomes one of figuring out how 

to set up the problem such that we can use 

published data to solve for biochemical 

homogeneity and unique location.  If we start 

with the first paper of the previous attempt 

(Bolender et al., 1978), we have morphological 

and biochemical data sets derived from intact 

tissue and biochemical fractions.  The paper 

reported individual animal data for the 

morphology, but just averages (mean values) 

for the biochemistry.  Consequently, the 

available data set will determine our approach 

to solving the first problem (biochemical 

homogeneity).  We know that the 

morphological data will supply the three data 

points needed to write a linear equation, but 

how do we get the three corresponding data 

points from just one biochemical value?    

 

METHODS AND RESULTS 
 

The Enterprise Biology Package 

The 2017 package includes the yearly report 

and related worksheets (Appendix). 

 

Figure 1  The EBS package for 2017 includes the yearly 
report with a focus on postulates central to cell and 

molecular biology. 

Overview 

The report revisits the data of several published 

studies with the goal of extracting new 

information from old data.  This will be done 

within the framework of a new postulate 

(biological homogeneity), one that assumes a 

one to one relationship exists between the 

genome and phenome.  We will argue that if 

the livers of two animals represent the 

downstream product of the same genetic 

information, then these livers can be expected 

to share the same set of rules – independent of 

the species in which they live.  

 

Biochemical Homogeneity 

We begin by exploring the deDuve’s postulate 

of biochemical homogeneity, the results of 

which will allow us to make biochemical and 

morphological predictions.  In turn, we will use 

these predictions to test the new postulate of 

biological homogeneity.  

Paper 1 (original data): By combining 

morphological and biochemical data within the 

framework of analytical fractionation (deDuve, 

1964, 1974), it was possible to show by 

calculating recoveries that morphological and 

biochemical data were conserved similarly 

(Bolender, et al., 1978).  Such a finding 

represented an essential first step in confirming 

the postulates of deDuve. 

Paper 1 (data reworked): If these biochemical 

postulates are correct, then the reworked data 

should fit a curve with an R2 = 1.  Morphology 

should follow biochemistry and vice versa.  In 

effect, the relationship of structure to function 

becomes the set of biological rules given at the 

outset as Equations 1 and 2.         

Consider the first problem we have to solve.  If 

we have individual animal estimates for the 

surface areas of the endoplasmic reticulum (ER) 
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and a single, mean value for its marker enzyme 

glucose-6-phosphatase (G-6-Pase), how do we 

translate these data into curve with an R2 = 1?  

These data are shown in Table 1. 

Table 1 Membrane surface area (ER) in the intact tissue is 
juxtaposed to the activity of an er marker enzyme (G-6-
Pase).  Both are derived from the rat liver. 

 

As presented in Table 1, the published data 

cannot give us a curve with an R2 = 1 because 

they do not yet conform to the homogeneity 

postulate of deDuve (1964).  A given amount of 

membrane surface area (ER) does not carry the 

same amount of enzyme activity, which in Table 

1 is given as an average value [(27.421 units of 

enzyme activity (U/g)].   

An equation will help.  It shows how we can 

reallocate the average enzyme activity in 

proportion to the amount of er membrane in 

each animal: 

4.87x +  4.31x +  4.62x =  27.421 ,            (3) 

where 𝑥 = 1.9871, 𝑎𝑛𝑑  

4.87 ∗ 𝑥 = 9.677 

4.31 ∗ 𝑥 = 8.564 

4.62 ∗ 𝑥 = 9.180.  

When the membrane surfaces and enzyme 

activities are related proportionately in accord 

with the postulate of biochemical homogeneity, 

we obtain the required results (Table 2).  For 

further details, see the calculation worksheet in 

the Appendix (playingcomplexitygames.com; 

Report 2017).       

Table 2 The experimental data now conform to the 
postulate of biochemical homogeneity. 

 

When we plot the individual animal data in 

Figure 2, the resulting equation with an R2 = 1 

demonstrates the presence of biochemical 

homogeneity.  This is reassuring in that we now 

have an equation that effectively passes 

through the origin (y intercept = 0.0063) and 

defines the relationship of structure to function 

in biology by rule.  In effect, we can now predict 

biological outcomes with the required level of 

assurance (R2 = 1).    

 

Figure 2 The linear relationship of G-6-Pase activity to the 
surface area of the er has an R2 = 1.  The equation solves 
for y (units of enzyme activity) when an ER membrane 
surface area (m2/g) is assigned to x.   

If we reverse the axes of the plot in Figure 2, we 

get an equation that uses enzyme activity to 

solve for ER surface area (Figure 3).   

G-6-PASE membrane enzyme

ER surface activity

m2/g liver U/g liver

tissue homogenate

er g-6-pase

animal 1 er-1 4.870 27.421

animal 2 er-2 4.310 27.421

animal 3 er-3 4.620 27.421

G-6-PASE membrane enzyme

ER surface activity

m2/g liver U/g liver

tissue homogenate

er g-6-pase

animal 1 er-1 4.870 29.031

animal 2 er-2 4.310 25.692

animal 3 er-3 4.620 27.540
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Figure 3  This equation allows us to predict the surface 

area of the er from the biochemical activity of G-6-Pase.  

Next, in an Excel worksheet, we can use the 

equation of Figure 3 to predict the surface areas 

of the er membranes from G-6-Pase activities 

(Figure 4).  When applied to G-6-Pase measured 

in tissue fractions (Table 3): E (extract), N 

(nuclear), M (heavy mitochondrial), L (light 

mitochondrial), and P (microsomal) fractions; 

(note that the supernatant fraction (S) is 

without membranes), the postulates of deDuve 

behave as expected a second time.      

 

Figure 4 A simple calculator - programed in an Excel 
worksheet - is shown predicting an er surface area (3.794 
m2/g) from an enzyme activity (22.62 U/g).  Recall that in a 
linear equation (𝑦 = 𝑚𝑥 + 𝑏), m is the slope and b the y 
intercept.  When the y intercept approaches zero (e.g., 

0.0011), it effectively passes through the origin. 

Table 3 The surface areas of er membranes (green overlay) 
in tissue fractions were predicted using the equation 
shown in Figures 3 and 4.  Recoveries were calculated for 

F/T, H/T, and F/T, where F=fractions (en+m+l+p+or-s), 
T=intact tissue, and H=homogenate. Paper 1 (original) and 
predicted recoveries are listed. 

 

Figure 5 plots the morphological recoveries 

given in Table 3.  Although the F/H recoveries 

are comparable for both approaches, the 

predicted recoveries show a clear improvement 

with membrane recoveries closer to 100%. 

 

Figure 5 A recovery equal to 100% represents the best 
possible outcome, wherein nothing is lost or gained 
because of the fractionation. The figure illustrates the 
ability of the R2 = 1 equation to predict the amount of ER 
membranes in the homogenate (H) and fractions (F); T 
identifies the amount of hepatocytic ER membrane 

estimated in the intact tissue. 

Notice in the plot above that predictions 

derived from the biochemical homogeneity 

equation (R2 = 1 equation) were more 

successful at detecting morphological 

membranes in tissue fractions than those based 

on the original stereological methods of Paper 

1.  More importantly, perhaps, the calculator 

shown in Figure 4 generated the results in just a 

few minutes. 

Since Paper 1 also included data for several 

other membrane-bound marker enzymes, they 

too were examined for homogeneity by 

subjecting them to R2 = 1 test.  The good news 

is that they all passed: cytochrome oxidase 

(CYOX) for the inner mitochondrial membrane 

(IMIM), monoamine oxidase (MAO) for the 

outer mitochondrial membrane (OMIM), and 

5’nucleotidase for the plasma membrane (PM).  

Since the complete set of calculations are 

included in the worksheets, only one plot per 

enzyme is given here. 

g6p(U/g) enter Y→ 22.620

slope y intercept

0.1677 0.0011

er(m2/g) X= 3.794

S(er) Predicted from G-6-Pase Activity

F F F/H F/H T H/T F/T

s(er) g-6-pase g-6-pase s(er) s(er) s(er)

e 3.794 22.620 4.870

n 0.715 4.256 26.876 ←H→ 4.509 4.310 4.509

m 0.611 3.639 4.620

l 0.409 2.435 13.800

p 2.473 14.740 4.600 4.600 4.600

s 0.072 0.420 25.490 ←F→ 4.280 4.280

paper 1 recoveries 94.66% 94.60% 84.30% 80.50%

predicted recoveries 94.84% 94.92% 98.03% 93.05%
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Figure 6 The equation predicts the surface area of the inner 
mitochondrial membrane (IMIM) - with an R2 = 1 - from 
cytochrome oxidase (CYOX) assayed in homogenates 
(E+N). 

 

Figure 7 The equation predicts the surface area of the 
outer mitochondrial membrane (OMIM) - with an R2 = 1 - 
from monoamine oxidase (MAO) assayed in homogenates 
(E+N). 

 

Figure 8 The equation predicts the surface area of the 
plasma membrane (PM) - with an R2 = 1 - from 

5’nucleotidase (5’NUC) assayed in homogenates (E+N). 

Summary: (Paper 1) 

• Data analyzed at the level of individual 

animals can be fitted to linear curves 

(Equations 1 and 2) that display R2 =  1. 

• The existence of R2 = 1 curves supports the 

postulates of deDuve by demonstrating 

mathematically a direct relationship 

between structure and function. 

• The postulates gain further support from 

the R2 = 1 curves by their ability to predict 

surfaces areas in tissue fractions with 

recoveries at or near 100%.   

 

Paper 2 (original data): The objective of this 

paper (Losa et al., 1978) was to identify 

membranes in the tissue fractions of 

biochemistry by quantifying intramembrane 

particles seen in freeze-fracture replicas.  In the 

microsomal fraction, for example, 63% of the 

membranes were identified as ER with freeze-

fracture and 62% with G-6-pase cytochemistry.  

The remaining membranes included PM + IMIM 

(20%) and OMIM (17%).  Earlier, however, 

Beaufay et al., 1974 reported that the 

percentage of the ER in the microsomal fraction 

was closer to 77%. 

Paper 2 (reworked data): Using R2 = 1 

equations, we can predict the membrane 

composition of the microsomal fraction from its 

marker enzyme data.  First, however, we need 

to show that the equations developed with one 

set of animals continue to hold true when 

applied to a new set of animals displaying 

different body and liver weights.  This will tell us 

whether the rules detected with one group of 

animals apply to other groups sharing the same 

species and liver related genes.  In other words, 

does genetic homogeneity translate into 

phenotypic homogeneity?     

To see if the R2 = 1 equations generalize, we can 

compare the predictions coming from the two 

different sets of animals used in Papers 1 and 2.   

The top panel of Figure 9 shows remarkably 

similar distributions for ER membrane surface 

areas (S) and G-6-pase activities (U) in the 

membrane containing fractions (N, M, L, P) for 

Papers 1 and 2.  When – for each paper - the 

individual surface areas are plotted against their 
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respective enzyme activities, the relationship of 

structure to function is defined by exactly the 

same R2 = 1 equation (bottom panel).  In effect, 

the data of both papers 1 and 2 adhere 

assiduously to the postulates of deDuve.   

  

 

Figure 9 The plots Illustrate that the same mathematical 
relationship exists between the data of Papers 1 and 2 (ER 
surface vs. activity of its marker enzyme G-6-Pase).  

Now we can turn our attention to the freeze 

fracture and cytochemical data of Paper 2.  

When we use the R2 = 1 equations of Paper 1 to 

predict membrane surface areas [plasma 

membrane (PM), inner mitochondrial 

membrane (IMIM), endoplasmic reticulum (ER), 

and outer mitochondrial membrane (OMIM)], 

from the biochemical data of paper 2, we can 

plot the new estimates next to the original ones 

from freeze-fracture (Figure 10).  The figure 

indicates that the two estimates fail to agree.   

 

Figure 10 The distribution pattern of cellular membranes in 
the microsomal (P) fraction estimated with freeze-fracture 
differs from those predicted from enzyme activities.   

How might we explain these differences?   

1. The intramembrane particle densities, 

which were used to identify microsomal 

membranes, showed considerable overlap 

for the PF faces in the intact tissue 

standards and the PF face of the PM and 

IMIM in fractions, as suggested in Figure 4 

and Table I; Paper 2).  Distinguishing RER 

from the OMIM might have been the most 

problematic (Figure 4, Paper 2).  These 

factors may have contributed to the higher 

than expected values for the PM+IMIN and 

OMIM values shown in Figure 10. 

2. As reported by Blouin et al. (1977), 30% of 

the plasma membranes in the liver derive 

from nonhepatocytic cells.  Since the 

contaminating plasma membranes are not 

known to carry the marker enzyme 

5’nucleotidase, they would be invisible to 

the predicted value based on enzyme 

activity, but possibly visible to freeze-

fracture.  This might help to explain the 

higher values for the combined PM+IMIM 

membranes in the P fraction (Figure 10).    

In the discussion of Paper 2, Losa et al., (1977) 

estimated the amount of ER membrane in the P 

fraction – assuming biochemical homogeneity – 

and arrived at a value somewhere between 76-

78%.  [Note: If we divide the corrected surface 

areas of the membranes in the intact tissue 

(Paper 1) by the sum of the enzyme activities in 
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the four fractions – N+M+L+P (Paper 2), we get 

a rough estimate for the membrane surface 

area associated with a unit of enzyme activity 

(S/U).]  By multiplying the S/U values by their 

respective enzyme activities in the P fraction 

(Paper 2), we can estimate the membrane 

surfaces (Figure 11).  Notice that this new value 

for the ER (80.11%) comes closer to the 76-78% 

suggested by Losa et al. (1977) and the 77% 

value of Beaufay et al. (1974).     

 

Figure 11 This distribution of membranes in the P fraction 
of Paper 2 is based on a rough estimate based on data 

coming from two different sets of animals (Papers 1 & 2) 
without the benefit of the R2 = 1 equations.  

Summary: (Paper 2) 

• When – for Papers 1 and 2 - G-6-Pase 

activities are plotted against their predicted 

ER surface areas, both data sets generated 

the same equation with an R2 = 1.  Such a 

finding offers further evidence in support of 

deDuve’s postulates.  

• The distribution of different membrane 

types in the P fraction of rat livers can be 

estimated using freeze-fracture, 

cytochemistry, and R2 = 1 equations.  

However, each estimate produced a 

somewhat different result. 

Paper 3 (original data): The objective of the 

study was to consider the relationship of ER 

membrane surface areas to their constitutive 

marker enzyme activities in homogenates and 

tissue fractions (Bolender et al., 1980).  When 

relative amounts of ER marker enzyme activities 

were compared to the surface areas of their 

membrane locations, variable distributions 

were found for G-6-pase and NADPH 

cytochrome c reductase (NADPH-CCR), but not 

for esterase.  G-6-Pase cytochemistry was used 

to identify ER membranes in fractions, but the 

recoveries indicated that roughly 30% of the 

membranes were not being detected (F/H = 

95.8%, H/T = 74.06%, and F/T = 70.7%.  (Recall 

that in Paper 1, the H/T and F/T recoveries 

predicted 98% and 93%.)   

In summary, the results of Paper 3 offered 

evidence both for and against the postulate of 

biochemical homogeneity. 

Paper 3 (reworked data): In revisiting these 

results, we will use the R2 = 1 equation for G-6-

Pase from Paper 1 to predict the ER surface 

areas in the homogenate and fractions from the 

enzyme activity data reported in Paper 3.  In 

turn, we will use these ER surface areas (based 

on G-6-Pase) to interpret two other ER marker 

enzymes - esterase and NADPH-CCR. 

When the R2 = 1 equation for G-6-Pase of Paper 

1 is applied to the biochemical data of the 

fractions reported in Paper 3, we continue to 

generate an equation with an R2 = 1 (Figure 12).  

Once again, two different sets of animals having 

different body and liver weights share the same 

relationship of structure to function - more 

evidence in support of deDuve’s postulates.   

 

Figure 12 When the equation of Paper 1 is used to predict 

ER surface areas from the biochemical data of tissue 
fractions in Paper 3, the result is a curve with an R2 = 1.  

Recall that deDuve’s postulates assume such a result.   
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Does this R2 = 1 approach ever fail?  Yes.  If we 

take the ER surfaces generated above with the 

R2 = 1 equation of Figure 12 and plot them 

against the activities of esterase and NADPH-

CCR, notice what happens.  We no longer get an 

R2 = 1 outcome.  Several data points have left 

the regression lines.   

 

 

Figure 13 When the distribution of ER membrane surface 
areas is based on G-6-Pase activity and used as a basis for 
plotting other ER marker enzymes (esterase, NADPH-CCR), 
several points no longer fall on the line and the R2 falls to 
0.9827.  Notice that the patterns of the points and the y 
intercepts of the two curves are different.    

Why did we have success in Paper 3 with G-6-

Pase, but not with esterase and NADPH-CCR?  

One explanation to consider is the possibility 

that the ER appears homogeneous, but in fact, 

it consists of two, slightly different 

homogeneities – one for the SER and another 

for the RER.  Were this the case, then we would 

expect to see the same distribution pattern for 

both the esterase and NADPH-CCR points in 

Figure 13, being tied as they both are to the 

same G-6-Pase prediction of membrane 

surfaces.  Clearly, this was not the case.  Biases 

and mistakes aside, a remaining possibility may 

offer a plausible explanation.  To wit, all three 

enzymes (G-6-Pase, esterase, and NADPH-CCR) 

may have homogeneous ERs, but slightly 

heterogeneous SERs and RERs.    

Since R2 = 1 equations are good at finding 

homogeneities, but not heterogeneities, we 

need equations better suited to the task of 

detecting heterogeneities.  If we write pairs of 

linear equations in two unknowns and solve 

them simultaneously, we can determine the 

enzyme densities (ED = units of activity/ 

membrane surface) of the SER and RER 

membranes (Bolender, 1981).  This calculation 

should tell us if these ER membrane 

subcompartments are the same or different.       

Since we know the surface area of the SER and 

RER in the intact tissue and the total G-6-Pase 

activity in the homogenate for three animals 

(Paper 1), we can write three linear equations 

consistent with the homogeneity postulate.  

This gives us three pairs of simultaneous 

equations (animals: 1-2, 1-3, and 2-3) that 

Mathematica (Wolfram Research, Inc.) can 

solve for us.  A successful solution gives pairs of 

enzyme densities (ED) - one for SER and another 

for RER.   

The linear equations in two unknowns [ED(ser); 

ED(rer)] take the following form: 

𝐴𝑛𝑖𝑚𝑎𝑙  1 

𝑆(𝑠𝑒𝑟) ∗ 𝐸𝐷(𝑠𝑒𝑟) + 𝑆(𝑟𝑒𝑟) ∗ 𝐸𝐷(𝑟𝑒𝑟) = 𝑈/𝑔  (4) 

𝐴𝑛𝑖𝑚𝑎𝑙  2 

  𝑆(𝑠𝑒𝑟) ∗ 𝐸𝐷(𝑠𝑒𝑟) + 𝑆(𝑟𝑒𝑟) ∗ 𝐸𝐷(𝑟𝑒𝑟) = 𝑈/𝑔 (5) 

𝐴𝑛𝑖𝑚𝑎𝑙  3 

  𝑆(𝑠𝑒𝑟) ∗ 𝐸𝐷(𝑠𝑒𝑟) + 𝑆(𝑟𝑒𝑟) ∗ 𝐸𝐷(𝑟𝑒𝑟) = 𝑈/𝑔 (6) 

𝑤ℎ𝑒𝑟𝑒 : 

𝐸𝐷(𝑠𝑒𝑟) = (𝑈/𝑔)/(𝑆(𝑠𝑒𝑟)/𝑔) 

𝐸𝐷(𝑟𝑒𝑟) = (𝑈/𝑔)/(𝑆(𝑟𝑒𝑟)/𝑔) . 

The equations and solutions appear below. 
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animal 1: S(ser)∙ED(ser) + S(rer)∙ED(rer) = U(G-6-Pase) 
animal 2: S(ser)∙ED(ser) + S(rer)∙ED(rer) = U(G-6-Pase) 

animal 3: S(ser)∙ED(ser) + S(rer)∙ED(rer) = U(G-6-Pase) 
 

Mathematica requires the following format, 

wherein x represents the enzyme density for 

the SER and y for that of the RER: 

 
Solve[{1.90 x + 2.97 y == 27.421, 1.44 x + 2.88 y == 24.267}, {x, y}] 
Solve[{1.90 x + 2.97 y == 27.421, 1.96 x + 2.66 y == 26.103}, {x, y}] 
Solve[{1.44 x + 2.88 y == 24.267, 1.96 x + 2.66 y == 26.103}, {x, y}] 

 
{{x -> 5.77267, y -> 5.53971}}               
{{x -> 5.97765, y -> 5.40858}} 
{{x -> 5.85671, y -> 5.49769}} 

 

Notice that the values (EDs) for X (ser) are 

slightly larger than those for Y (rer).  In effect, 

the SER and RER are heterogeneous with 

respect to one another.  

If we substitute the values for X and Y back into 

the equations, we can compare the predicted 

values for G-6-Pase to the ones originally 

measured (Figure 14).  Notice that the two 

values are almost identical.   

 

Figure 14 The units of G-6-Pase activity estimated for the 
SER and RER in three animals matches the activity of the 
ER assayed in the same animals biochemically.   

Since the EDs of the SER and RER appear to 

differ by such a small amount, is the difference 

significant?  If we run a double tailed t test on 

the data and plot the results, the answer is yes 

(Figure 15).  Not only does a difference exist, it 

is highly significant (P = 0.0056).             

 

Figure 15  The enzyme density of the SER is greater than 
that of the RER by 7% (P=0.0056).  In effect, the 
homogeneity of the ER reflects two underlying 
heterogeneities.   

Notice the ability of enzyme densities (ED) to 

define mathematically a fundamental concept 

of biology – the relationship of structure to 

function.  They become predictive when plotted 

as a linear equation (R2 = 1), can quantify the 

concentration of a given marker enzyme when 

it exists at different morphological locations, 

and even unfolds the complexity of a biological 

change (Bolender, 1981).        

Finally, we need to address the key finding of 

biochemical heterogeneity in Figure 5 of Paper 

3, which used G-6-Pase cytochemistry to 

identify membranes of the ER in tissue 

fractions.  If we recalculate the relative specific 

activities (RSA) for G-6-Pase using the enzyme 

activities of the fractions and the ER surfaces 

predicted from these activities with the R2 = 1 

equation of Paper 1, we find evidence for 

homogeneity, not heterogeneity – at the ER 

level.  In effect, the data of Paper 3 now 

support deDuve’s postulates of biochemical 

homogeneity and single location.     
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Figure 16 The relationship of marker enzyme activity to ER 

membrane surface area depends on how the ER 
membranes are identified in the four fractions (N, M, L, P).  
Cytochemistry detects biochemical heterogeneity, whereas 

R2 = 1 equations find biochemical homogeneity.     

Before leaving Paper 3, we need to tidy up a 

few loose ends.  Recall that when using the ER 

surface areas predicted from G-6-Pase activity, 

the expected R2 = 1 equations failed to 

materialize for esterase and NADPH-CCR (Figure 

13).  If, however, we use the standard method 

for generating these equations (Equation 1, 

Table 2, Figure 2), the R2 = 1 equations appear, 

along with recoveries close to 100%.   The 

recalculated equations are given in Figure 17. 

  

 

Figure 17 When related to the surface area of the ER, both 
esterase and NADPH-CCR display R2 = 1 equations.      

Since the intact tissue values for the ER but not 

SER and RER were included in Paper 3, enzyme 

densities for these locations could not be 

calculated, using equations 4, 5, and 6.  

 

Summary: (Paper 3) 

• The R2 = 1 equation for G-6-Pase from Paper 

1 predicted the surface areas of the ER in 

the fractions of Paper 3 (using data from 

three different animals) with an R2 = 1.  Such 

a result supports the postulates of 

biochemical homogeneity and single 

location. 

• When the predicted er surface areas in the 

fractions were plotted against their 

corresponding enzyme activities for esterase 

and NADPH cytochrome c reductase, the 

resulting equations did not display R2s = 1.  

This suggested that the subcompartments 

of the ER – the SER and RER – were 

heterogeneous (they had different EDs).      

• The SER and RER subcompartments of the 

ER were tested for homogeneity by solving 

three sets of simultaneous equations.  The 

results indicated that the SER membranes 

had a 7% higher concentration of G-6-Pase 

per unit of membrane surface area than 

those of the RER. 

• It appears likely that ER marker enzymes, 

such as G-6-Pase, esterase, and NADPH-

CCR, are distributed unequally across the 

membranes of the SER and RER.  This may 

be due to the presence of ribosomal 

attachment sites on the RER consuming 

territory that would otherwise belong to the 

marker enzymes.  This could explain the 

lower enzyme concentrations on the RER.   
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Predicting Biochemistry from 
Biochemistry 
 

With evidence in support of the postulates of 

biochemical homogeneity and single location, 

we can now turn our attention to the problem 

of assembling predictive networks for 

biochemical data – across publications.  We 

begin the process by identifying quantitative 

patterns in biochemical data, using 

mathematical markers and connection ratios. 

Identifying biochemical patterns: Amar-

Costesec et al., (1974) published an extensive 

collection of biochemical assays from the rat 

liver, including data from tissue homogenates 

(E+N) and fractions (N, M, L, P, S).  The data set 

included assays for 22 different enzymes, 

coming from hundreds of experiments.    

We can use this data set to look for patterns of 

similarity.  By generating triplets (22 enzyme 

activities taken three at a time), and relating 

them to the ratios of their activities, we can see 

the extent to which biology orders its enzyme 

activities in rat liver hepatocytes (Figure 18).  

The plot (top panel) suggests that the 

proportions of one enzyme activity to another is 

being highly orchestrated by biology.  Each 

rosette represents a unit of common 

connectivity.  The enlarged portion of the plot 

(bottom panel) shows that the same pattern – 

the ratio of three different enzyme activities 

(triplets) - occurs many times with many 

different groupings of enzymes.  

 

 

Figure 18  Top panel: The plot illustrates the connectivity of 
22 enzymes in the rat liver.  Bottom panel: The 

enlargement shows that many different combinations of 
enzyme activities frequently share the same proportions.  
The central dot identifies a connection ratio, whereas the 

surrounding dots represent mathematical markers 
(enzyme triplets) sharing that ratio.  (Plots derived from 

data published by Amar-Costesec et al., 1974.) 

If we consider just G-6-Pase and its relationship 

to the remaining 21 enzymes, we can see how 

one enzyme fits into the larger picture of 

biological complexity (Figure 19).  These 

repeated patterns - an expression of 

stoichiometry – identify the downstream 
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expressions of genetic activity.  Although these 

patterns signal the presence of underlying 

biological rules, how does biology know when 

and where to apply them?  Where do these 

rules come from?  Are they coded somewhere?    

 

Figure 19 Top panel: The plot shows the relationship of G-
6-Pase to the remaining 21 enzyme activities (original data 

from Amar-Costesec et al., 1974).  Bottom panel: The 
rosette in the upper left corner of the top panel is shown 
with the mathematical markers (periphery) and connection 

ratio (center) replacing the points.  Enlarge as needed.  

Predicting enzyme activities: If, as seen in 

Figures 18 and 19, the enzymes in liver 

hepatocytes are related to one another as a 

ratio of their activities, then the activity one 

enzyme could be expected to predict the 

activities of other enzymes.  To assemble such a 

network, as illustrated in Table 4, we can once 

again use the published data set of Amar-

Costesec et al., (1974) and choose G-6-Pase as 

our reference enzyme (the denominator of the 

prediction ratios).  In turn, we can test the 

effectiveness of such a network by using it to 

predict the biochemical results of Papers 1,2, 

and 3 from the activity of a single enzyme 

activity (G-6-Pase = 27.42) entered into Table 4 

– the highlighted value.     

Table 4 When expressed as ratios of G-6-Pase activity, the 
resulting network of enzyme data becomes predictive. 

Note that the table uses the published data of Amar-
Costesec et al., Table II; (1974).  A value entered for G-6-

Pase will predict values for itself and for the remaining 
enzymes listed in the table.  The test (observe vs. predict) 
was applied to enzyme data of Papers 1, 2, and 3, as 

shown in the following figures.  To run a test, enter a value 
for G-6-Pase (e.g., 27.42) into the data entry field 
(highlighted) and press Enter. The results are plotted in 
Figure 20. 

 

For a prediction to be successful, it should 

generate an equation – comparing observed to 

predicted values – with an R2 ≈ 1.  Once again, 

the curve should pass through the origin – or 

nearly so.  As shown in Figures 20 and 21, most, 

Enzyme Location G6Pase=1 27.42 Observe Predict

5'-nucleotidase pm 0.559 15.34 15.83 15.34

acid phosphatase lysosome 0.281 7.70

aldolase cytoplasmic 0.394 10.81

alkaline phosphatase pm 0.121 3.33

alkaline phosphodiesterase 1 pm 0.866 23.75

aminopyrine demethylase er 0.004 0.11

b-glucuronidase lysosome 0.058 1.59

catalase peroxisome 2.356 64.61

cytochrome b5 er 0.950 26.06

cytochrome oxidase imim 0.936 25.66 19.65 25.66

cytochrome p 450 er 1.074 29.46

esterase er 12.723 348.86

fumarase mi 4.733 129.77

galactosyl transferase golgi 0.001 0.02

glucose-6-phosphatase er 1.000 27.42 27.42 27.42

glucuronyltransferase er 0.118 3.23

glutamine synthetase mi 0.426 11.69

monoamine oxidase omim 0.025 0.69 0.64 0.69

n-acetyl-b-glucosaminidase lysosome 0.341 9.34

nadh cytochrome c reductase imim 4.950 135.74

nadph cytochrome c reductase er 0.197 5.40

nucleoside diphosphatase golgi 4.950 135.74
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but not all the enzymes in play met these 

conditions.     

Paper 1 

 

Figure 20 The biochemical data observed and predicted in 

Table 4 are plotted with four (top) and three enzyme 
activities.  When the cytochrome oxidase point (25.66) is 
excluded, the equation displays a R2 close to one (0.9995).     

Paper 2 

 

Figure 21 Once again, removing cytochrome oxidase 

brought the R2 close to one (0.9996). 

 

 

 

Paper 3 

 

Figure 22  For Paper 3, the biochemical predictions worked 
for only two of the three marker enzymes.  The esterase 

inconsistency cannot be explained.  

Why did some predictions work, but others 

not?  As a practical guideline, predictions for 

enzyme activities that can be confirmed with R2 

≈ 1 equations are the ones most likely to be 

credible.    

The fact that the data of one publication (Amar-

Costesec et al., 1974) was successful in 

predicting the data of several other studies 

(Papers 1-3) represents a preliminary, but 

promising outcome.  Cytochrome oxidase, 

however, failed to fit into the expected R2 = 1 

pattern it displayed in Papers 1 and 2.  Why?    

Recall that cytochrome oxidase is attached to 

the inner mitochondrial membrane, but is 

derived from both mitochondrial and nuclear 

DNA (Youfen et al., 2016).  By having to serve 

two sets of rules (mitochondrial and nuclear 

DNA), it becames an outlier.  As such, it doesn’t 

belong to an R2 = 1 equation made up of 

enzymes derived wholly from nuclear DNA 

(Figures 20 and 21).             

Summary (Predicting Biochemistry from 

Biochemistry): 

• The relationship of one enzyme activity to 

another is defined by a ratio. 

• Ratios of enzyme activities display predictive 

properties with R2 ≈ 1. 
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• Although biochemical networks are largely 

under the control of nuclear DNA, 

mitochondrial DNA can also be in play. 

• The cytochrome oxidase system – a marker 

enzyme for the inner mitochondrial 

membrane - is controlled by both nuclear 

and mitochondrial DNA. 

 

Predicting Morphology from 
Morphology 
 

Predicting morphological surface areas: Using 

the approach just described for biochemistry, 

we can also predict the amounts of membrane 

organelles in cells (e.g., hepatocytes).  Recall 

that this is possible because biology defines the 

relationship of one part to another 

quantitatively with ratios.     

Figure 22 plots two sets of membrane surface 

areas -  animal 1 vs. animal 3 - from Paper 1.  

Notice that they fit a line with an R2 close to 1 

(0.996) that passes roughly through the origin 

(0.0116) – properties consistent with 

biochemical and biological homogeneity.  

  

Figure 23 Surface areas of eight organelles are divided by 

the surface area of the ER for each of two animals.  The 
plot with an R2 = 0.9958 suggests that the two animals 
contain the same relative amounts of hepatocytic 
organelles.  

In turn, the data of animals 1 and 3 of Paper 1 

(Figure 23) were averaged and used to 

assemble an interactive prediction table (Table 

5) – analogous to the one used in Table 4 for 

biochemistry.   

Table 5 When a value for the ER is entered (highlighted 

field - 4.87), values for the remaining membrane 
organelles are predicted.  When compared to the observed 

data of a single animal (Paper 1), they show close 
agreement – as expected (recall Figure 23).  

 

The advantage of such organelle prediction 

tables is that they derive from the order biology 

creates in cells with its well-defined ratios.  

Moreover, such prediction tables, which can be 

assembled in a few minutes, generate large 

amounts of new data quickly and cost-

effectively.  With just an estimate for the ER 

surface area, for example, we could readily 

predict surface areas for a panel of other 

organelles – such as those listed in Table 5.  In 

turn, we can translate the membrane surface 

areas into enzyme activities.      

Consider Paper 3.  There were only two 

estimates reported for the intact tissue (ER and 

total membranes).  If we use Table 5 and enter 

a value for the ER for each animal, we can 

predict the missing data (Golgi, plasma 

membrane, and mitochondrial membranes), as 

shown in Table 6.  In turn, we can check the 

predictions by calculating recoveries that 

compare observed to predicted values (sum vs. 

observed) – e.g., 8.77/9.49 = 92.4%.   

Table 6 When a value from Paper 3 is entered for the ER, 
the table predicts surface areas for the Golgi, plasma 

membrane, and mitochondria.  When the sums of the 
membrane surface areas are compared to the published 
totals, the recoveries ranged from 92 to 97%.  Such results 

Location m2/g 4.87 Observe Predict % (O/P)

er 1.000 4.870 4.870 4.870 100%

ser 0.407 1.983 1.900 1.983 96%

rer 0.593 2.887 2.970 2.887 103%

go 0.039 0.192 0.151 0.192 79%

pm 0.109 0.533 0.537 0.533 101%

mim 0.788 3.837 3.900 3.837 102%

omim 0.207 1.007 0.993 1.007 99%

imim 0.581 2.831 2.910 2.831 103%

sum 18.231 18.140 101%
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suggest that the animals in Papers 1 and 3 are reading the 
same blueprint when populating hepatocytes with 

organelles.  

 

Summary (Predicting Morphology from 

Morphology): 

• The surface areas of membrane organelles 

relate to one another as ratios.   

• Membrane surface areas can be predicted 

from ratios of membrane surface areas. 

 

Biological Homogeneity 

If the genetic coding for the liver has remained 

largely unaltered over time, then the down-

stream relationships of structure to function 

should be conserved similarly across animal 

species.  In effect, homogeneity in the genotype 

would be expected to predict homogeneity in 

the phenotype.   

To test this postulate of biological homogene-

ity in the phenotype, we need to show that the 

patterns and rules detected in rat liver 

hepatocytes continue to exist - largely 

unaltered - in the hepatocytes of other species.     

At this point, our job becomes more difficult 

because the assumptions of experimental 

uniformity enjoyed in Papers 1 to 3 - animal age 

and sex, fasting, sampling, and exposure - often 

no longer apply.  Although comparing the data 

of one species to that of another continues to 

require a comparable amount of preprocessing 

(section related corrections and 

standardization), the data published for humans 

and other species tend to be sparse and often 

incomplete for our purposes here.  This means 

that the generalizing arguments made earlier 

with R2 = 1 equations will be replaced by those 

based on the available data and predictions 

(Note that the calculations are given in the 

Appendix).  We begin by looking for similarities 

in hepatocytic organelles between humans, 

rats, and dogs in four papers.   

Koch, M. M. et al., 1978, A stereological and 

biochemical study of the human liver in 

uncomplicated cholelithiasis:  The main point 

of the first example is to show that we can start 

with a single data point – biochemical or 

morphological - and end up with largely the 

same results.  Such an outcome would be 

expected when the same rules are in play.  

Using human biopsy specimens, Koch et al., 

(1978) reported membrane data related to the 

cytoplasm of hepatocytes.  These data were 

converted to a gram of liver (on the assumption 

that the hepatocytic cytoplasm represents 71% 

of the liver volume and that the human liver has 

a density of 1.07 g/cm3) and corrected for 

section related artifacts (see Table III of Paper 

1).  The results (human data for organelle 

surface areas per gram liver) were plotted 

against comparable data from the rat, which 

were predicted from the human value for the 

ER using the equations of Paper 1 (Figure 24).  

Notice that the results were roughly similar 

between the two species for the ER, plasma 

membrane (PM), and outer mitochondrial 

membrane (OMIM), but not for the inner 

mitochondrial membrane (IMIM) – the 

perennial outlier.  

Location Animal 2 Animal 3 Animal 4

er 4.53 4.31 4.62

go 0.18 0.17 0.18

pm 0.50 0.47 0.51

mim 3.57 3.40 3.64

sum 8.77 8.35 8.95

observed 9.49 8.95 9.22

recoveries 92.4% 93.3% 97.0%
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Figure 24 Surface areas of organelles in human 
hepatocytes are compared to those in the rat, which were 
predicted from the human biopsy estimate for the ER 
surface area using the data of Paper 1.  The results - 

espressed relative to the surface area of the ER in each 
species – show similar patterns – except for the inner 
mitochondrial membrane .  (Data adapted from Koch et 

al., 1978 and Paper 1)   

Next, we can use the one enzyme activity 

reported in the Koch paper (NADPH-CCR) to 

generate a second set of estimates, using the 

biochemical data coming from the rat liver.  

Since the assay for NADPH-CCR came from a 

microsomal (P) fraction, it was scaled up to the 

homogenate on the assumption that the P 

fraction contained 63% of the total activity (see 

Table III of Paper 3).  Next, a prediction table 

like the one shown in Table 4 was assembled for 

NADPH-CCR (now expressed as a homogenate) 

by dividing all the enzyme activities by that of 

NADPH-CCR.  This generated a list of marker 

enzyme activities for the human liver (using the 

data of Amar-Costesec et al., 1974; Table II) 

adjusted to the expected proportions.  In turn, 

these predicted marker enzyme activities were 

used to predict their corresponding membrane 

surface areas – in the intact tissue - using the R2 

= 1 equations of Paper 1.  In short, a single data 

point - a microsomal estimate for NADPH-CCR - 

was used to predict membrane surface areas 

(homogenate) for the plasma membrane 

(5’Nucleotidase), outer mitochondrial 

membrane (MAO), and inner mitochondrial 

membrane (Cy0x); see Table 8.  The results, 

which appear in Figure 25, are once again 

expressed relative to the ER surface area.  They 

suggest that the R2 = 1 equations from the rat 

did a much better job at predicting the ER, PM, 

and OMIM in humans than for the IMIM. 

 

Figure 25  The second prediction – based on the biopsy 
estimate for NADPH-CCR- resembles the first (Figure 24).    
(Data adapted from Koch et al., 1978, Amar-Costec et al., 
1974 – predicted marker enzyme activities, and Paper 1 – 

predicted membrane surface areas from predicted enzyme 
activities.)   

By including membrane surface areas and a 

single enzyme activity (NADPH-CCR), the Koch 

paper offered several options for reworking the 

data within the framework of biological 

homogeneity.  The patterns displayed by 

Figures 24 and 25 show that predictions based 

on either morphology or biochemistry can 

produce surprisingly similar outcomes - even 

when they relied on data coming from two 

(Figure 24) or three (Figure 25) different papers.  

This suggests that the biology literature 

contains research data quite capable of playing 

by the same rules.  The large discrepancy seen 

for the surface area of the inner mitochondrial 

membrane is consistent with the results seen 

earlier for this outlier (Figures 20, 21). 

Roessner, A. et al., 1978, Ultrastructural 

Morphometric Investigations on Normal 

Human Liver Biopsies:  In this paper, we 

consider a second set of membrane data 

coming from the human liver.  Biopsies from 14 

normal adults (male and female) were used to 

estimate the surface areas of hepatocytic 

organelles.  The raw estimates were corrected 

for section related biases (see Paper 1), 
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converted to a gram of tissue, and, in turn, 

expressed as proportions [S(Organelle i/S(ER)] 

(Figure 26-top), and then as concentrations 

(m2/g liver) (Figure 26 -bottom).   

 

Figure 26 When expressed as ratios relative to the ER, the 

patterns of hepatocytic organelles in humans and rats 
display remarkably similar patterns (top).  However, when 
expressed per gram of liver, the fed humans display only 

about half the membranes seen in fasted rats (bottom). 
(Data adapted from Roessner et al., 1978 and Paper 1)   

Figure 26 indicates that organelles in human 

and rat hepatocytes occur in roughly the same 

proportions relative to the ER (top), but, when 

related to a gram of liver, the fasted rat 

contains roughly twice the amount of each 

organelle.  Why?  Given the homogeneity 

postulate, we could readily attribute similar 

ratios to similar DNA, but the m2/g data offer 

more of a challenge.  Notice that the rats were 

fasted, but the humans not.  Glycogen stores, 

which account for about 20% of the cytoplasmic 

volume in hepatocytes, disappear in fasted rats.  

This means that a fasted gram of liver would 

have had to increase by 20% the number of 

hepatocytes contained therein to weigh one 

gram.  However, this still leaves 80% of the 

difference unexplained.  Now let’s try a basic 

metabolic rate (BMR) argument.  The BMR 

(cal/kg/day) of rats is about 96 and that of 

humans 25 (Holliday, 1967) – a difference of 

roughly 4 to 1.  This suggests that the rat with 

its higher metabolic rate would require a liver 

capable of delivering more energy – per gram.  

Consequently, we would expect the hepatocyte 

to contain more of everything, including ER, 

mitochondria, et cetera – all in keeping with its 

expected ratios (see, for example, Table 5).  In 

effect, the BMR argument could readily account 

for the elevated organelles shown in Figure 26 

(bottom).   

A lesson to take from Figure 26 is one of 

perception.  The same data set can be 

interpreted as a consistency (top) or as a 

inconsistency (bottom).  Note that ratios detect 

rules, whereas absolute values and 

concentrations (e.g., m2/g) appear to be 

detecting rules adapted to a given species 

(human vs. rat) or to a local set of conditions 

(fed vs. fasted).     

In summary, Figure 26 (top) suggests that both 

humans and rats share a common blueprint, but 

that the blueprint comes with an ability to scale 

(Figure 26 (bottom).  Both findings, however, 

are consistent with the postulate of biological 

homogeneity.   

de-la-Iglesia, F. A. et al., 1976, Quantitative 

microscopic evaluation of morphometry of the 

endoplasmic reticulum in developing human 

liver:  Biopsies taken from the livers of male and 

female volunteers – ranging in age from 10 to 

18 years – are compared to values coming from 

adult male rats (Paper 1) in figure 27.  One 

group was fed, the other not.  Although the 

pattern for the ER and Golgi were similar in 

both species, it was different for the SER and 

RER.   
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Figure 27 With corrections applied, the surface areas of the 
ER and Golgi displayed similar distributions, whereas those 
of the RER and SER did not. (Data adapted from de-la-
Iglesia et al., 1976 and Paper 1)   

Hess, F. et al., 1973, Morphometry of the Dog 

Liver: Normal Base-Line Data:  In Figure 28, 

biopsies obtained from 4 adult female dogs 

(fed) were compared to the adult male rats 

(fasted) of Paper 1.  The comparison suggests a 

similar pattern for the ER membranes, but once 

again not for those of mitochondria.   

 

Figure 28  When corrected and expressed relative to the 

surface area of the ER, the ER of both species appear 
similar, but not the membranes of mitochondria. (Data 

adapted from Hess et al., 1973 and Paper 1) 

Summary: (Biological Homogeneity) 

• R2 = 1 equations and predictive ratios 

(biochemical and morphological) can be 

similar within and across animal species. 

• The absolute and relative amounts of cell 

organelles would appear to be under 

separate control mechanisms.   

• The inner mitochondrial membrane – under 

dual DNA control - continues to behave as 

an outlier.  

 

DISCUSSION 
 

Overview 

The report focused on two sets of homogeneity 

postulates, the first well-established and the 

second an extension of the first.  Both sets 

serve to define the relationship of structure to 

function in living organisms.  By expressing this 

relationship mathematically (Equations 1 and 

2), we begin the process of using the phenome 

– the downstream product of DNA – to predict 

and unravel upstream events.     

The incentive for pursuing a general solution to 

the homogeneity postulates came from the 

finding of molecular biology that different 

species share remarkably similar or identical 

blueprints for many of their parts.  From this it 

was reasoned that animal species must be 

subject to many – if not most - of the same 

rules.     

Since we already know from earlier work with 

ratios that biology operates by rule (Bolender, 

2011 to 2016), the problem became one of 

identifying a mathematical model capable of 

predicting events - consistent with a reality 

defined by biology.  Given the understanding 

that prediction in biology requires equations 

with R2 = 1 (Bolender, 2003) and given the 

model previously defined by deDuve’s 

postulates, finding a solution consisted largely 

of reworking published data. 
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Postulates of deDuve  

The postulate of biochemical homogeneity 

states that the members of a given population 

[in a cell] have the same biochemical 

composition.  This means that a given amount 

of membrane surface area can be expected to 

define a given amount of marker enzyme 

activity.  In effect, the postulate tacitly assumes 

a quantitative relationship between structure 

and function, as defined by Equations 1 and 2.   

If we assume the postulates of deDuve’s to be 

correct, then we would expect to find a table of 

equations with R2s = 1 covering a wide range of 

cell organelles.  Table 7 provides such a 

supporting document.  Notice that these 

equations capture rules that biology has 

defined as ratios.  Does this mean that biology 

encodes such rules in its DNA or do the rules 

come from recipes that biology can change as 

the need arises?  

Table 7 Biochemical homogeneity allows us the predict 
enzymes from surfaces and surfaces from enzymes.  In 

effect, relationships of structure to function become 
mathematically interchangeable.  (Data adapted from 
Papers 1, 2, and 3). 

 

Why did it take so long to uncover the R2 = 1 

rules?  By reporting research data as averages, 

we effectively forfeited the data of individual 

animals, which - as shown here - were needed 

to generate these equations (Table 1 vs. Table 

2). 

Reproducibility 

Revisiting the homogeneity postulate would 

seem a timely exercise in view of the ongoing 

reproducibility crisis in biology (Baker, 2016).  

What needs to be done?  Find out what’s not 

working and then fix it.  Let’s look at a worked 

example to see how this approach can be 

applied to biochemistry.   

Given the mathematical order assumed by the 

postulate of biochemical homogeneity, why can 

we predict enzyme activities from relative ratios 

(Table 4), but not from absolute values?  This 

question became an issue when several 

published values were found to disagree with 

those of Amar-Costesec et al., 1974; Table II).  

Why did they disagree?   

Consider this.  If we relate enzyme activities to a 

mg of protein reference that varies from paper 

to paper, then this variation can be expected to 

affect the values reported for the enzymes.  In 

effect, the mg protein reference represents a 

variable.  What would happen, for example, if 

we standardized our assays – across 

publications - to the same amount of protein?  

Might disagreement suddenly become 

agreement?  Given the plot shown in Figure 29, 

the answer appears to be yes.  Now most of the 

biochemical results can be replicated.    

INPUT X PREDICT Y

X UNITS Y UNITS EQUATION R2 =

S(ER) U/G G-6-Pase M2/G Y = 5.9625X 1

G-6-Pase U/G S(ER) M2/G Y = 0.1677X 1

S(ER) U/G Esterase M2/G Y = 46.657X 1

Esterase U/G S(ER) M2/G Y = 0.0214X 1

S(ER) U/G NADPH-CCR M2/G Y = 0.9829X 1

NADPH-CCR U/G S(ER) M2/G Y = 1.0174X 1

S(OMIM) U/G MAO M2/G Y = 0.6310X 1

MAO U/G S(OMIM) M2/G Y = 1.5848X 1

S(IMIM) U/G CYOX M2/G Y = 6.8150X 1

CYOX U/G S(IMIM) M2/G Y = 0.1467X 1

S(PM) U/G 5'NUC M2/G Y = 26.267X 1

5'NUC U/G S(PM) M2/G Y = 0.0381X 1
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Figure 29  When enzyme assays are related to the same 
amount of protein, absolute values tend to come closer 

together. 

Summary 

• The relationship of structure to function 

exists as a biological rule (Equations 1 and 

2), which can be captured with R2 = 1 

equations. 

• Biology defines its precision and accuracy 

one organism at a time.  

• Biochemical data can be standardized to a 

given amount of protein across publications. 

 

Postulate of Biological Homogeneity 

The postulate of biological homogeneity 

assumes that the same genetic information 

(DNA) produces the same parts within and 

across animals.  In other words, R2 = 1 

equations derived from the cells of one species 

apply to all those species carrying the same 

DNA sequences. 

Evidence in support of this new postulate came 

from deDuve’s postulates, which were shown to 

apply repeatedly within a single species (Table 

7) and often across multiple species (Figures 24-

28).      

Perhaps the strongest support for the postulate 

comes from Figure 26 (top panel).  The patterns 

displayed by the hepatocytes of human and rat 

livers were clearly similar for five of the six 

organelle ratios.            

Summary 

• Equations 1 and 2 and strings of ratios can 

predict outcomes within and across animal 

species. 

• When attempting to compare data collected 

from subjects under widely different 

conditions (e.g., age, sex, exposure, 

sampling, nutritional state), inconsistent 

results are to be expected. 

• Using enzyme densities expressed as R2 = 1 

equations, both the structure and function 

of a cell can be reconstructed from a single 

data point with data coming from different 

species. 

 

Enzyme Densities (ED)  

Enzyme densities were used throughout the 

report to define relationships of structure to 

function, to detect patterns of biochemical 

homogeneity, and to predict data points.  In 

effect, they are proving to be an effective data 

type for managing a wide range of complexities.  

Enzyme densities offer the promise of moving 

events occurring in the phenome one step 

closer to their antecedents in the genome.  

Recall that DNA microarrays can tell us what 

RNAs are being expressed, but such RNAs are 

still many steps removed from their final 

products in the cell.  This is where enzyme 

densities and stereology can play an important 

role by filling in the missing dots.  Translating 

gene expression into changes expressed at the 

level of cellular membranes, for example, is 



22 
 

going to require detailed information about (1) 

changes in membrane surfaces areas, (2) 

changes in the packing densities of molecules in 

the membranes, and (3) changes in the rates of 

membrane turnover.  Such information should 

prove invaluable as we begin to generate 

complexities parallel to the ones existing in the 

genome. 

Equations 4, 5, and 6 and their method of 

solution might also be telling us something 

about the basic strategy of living systems.  Since 

the simultaneous solution to pairs of linear 

equations is akin to linear programming, an 

enzyme density may represent an optimal 

solution to the problem packing enzymes in 

membranes, one that provides specific 

advantages to an organism.  In effect, 

optimization may explain adaptability.     

The biggest surprise, however, was how quickly 

enzyme densities and their R2 = 1 equations 

triggered the transition to prediction.  Starting 

with control data, we can now do all the 

following. 

• Predict morphology from biochemistry. 

• Predict biochemistry from morphology. 

• Predict morphology from morphology. 

• Predict biochemistry from biochemistry. 

It will be interesting to see how long it takes to 

repeat these predictions in experimental 

settings when so many parts are changing at 

the same time.      

 

First Principles (Rules)  

To the list of rules started earlier (Bolender, 

2016; Page 100), we can add four new ones.   

Structure to Function Rule:  Biology defines 

relationships of structure to function within 

tight tolerances, as shown by equations with R2 

= 1.   

Prediction Rule: Prediction in biology requires 

data fitted to equations with R2 = 1 or R2 ≈ 1.   

Amounts Rule: Biology defines the relative 

amounts of its parts (e.g., molecules, 

organelles, cells, etcetera) with well-defined 

ratios, but allows their absolute amounts to 

vary markedly.     

Mitochondrial Discontinuity Rule:  

Mitochondrial parts and their relationships of 

structure to function can be defined by genetic 

coding coming from both nuclear and 

mitochondrial DNA.  Consequently, rules 

defined by nuclear DNA may not apply.    

 

Bias, Contamination, and Average 

Data  

When running - in parallel - morphological and 

biochemical experiments within the framework 

of analytical fraction, identifying sources of 

error (bias and contamination) and applying 

corrections was central to the experimental 

design of Papers 1 to 3. 

Estimates for membrane surface areas, for 

example, carry biases determined by the sizes 

and shapes of the membranes relative to the 

section thickness.  Moreover, the same 

membrane organelles come with one set of 

biases in the intact tissue, but the same 

membranes assume an entirely different set of 

biases in each of the five consecutive tissue 

fractions.  This required the application of 

corrections for the section related biases prior 

to calculating the morphological recoveries 

(Paper 1).   

The liver itself can become a major source of 

contamination in that it contains cells other 

than hepatocytes (e.g., endothelial, fat-storing, 

and Kupffer cells).  Contributions from these 

contaminating cells can be avoided when 

estimating membrane surface areas in the 
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intact tissue by simply ignoring them, but this is 

not the case in the tissue fractions.  As 

described in Papers 1, 2, and 3, the stereological 

estimates had to be corrected for both related 

biases and cell contaminations.  Overestimates 

for membrane surface areas were corrected 

according to Weibel and Paumgartner (1978) 

and the extra-hepatocytic contaminations were 

accounted for using the data of Blouin et al., 

(1977).     

Figures 30 and 31 tell the bias story most 

effectively.  The uncorrected data of Figure 30 

leads to failure (R2 ≠ 1 and the curve misses the 

origin), whereas the corrected data (Figure 31) 

leads to success (an equation with a R2 = 1 that 

passes through the origin).  Given the Weibel-

Paumgartner corrections, we now have R2 = 1 

equations, an empirical proof for the postulates 

of deDuve, prediction, and a mathematical 

strategy for advancing toward the genome.       

 

Figure 30  Stereological estimates for membrane surface 
areas – uncorrected for section related biases – produce 
unusable results.  Compared to corrected data in Figure 31, 

the slopes differ by 59% (5.9625/3.7564).  

 

Figure 31 When corrected for biases according to Weibel 
and Paumgartner (1978), stereological data - in 
combination with biochemistry - provide ready access to 
otherwise undetectable relationships of structure to 

function in biology.      

Although Figure 31 and several similar plots 

were needed to support the biochemical 

homogeneity postulate, we have yet to address 

the practical problem of having to deal largely 

with published data expressed as averages.  

What can we do?  The simplest solution would 

be to plot enzyme densities (ED) as R2 = 1 

equations.  If, for example, we average the data 

given in Table 4 and divide the average units of 

activity by the average surface area, we get an 

ED of 5.9611.  When expressed as a structure-

function equation, we have: 

𝑌 = 5.9611𝑋  .     (5) 

Notice that a plot of equation 5 (Figure 32) 

produces a curve that is almost identical to the 

one shown in Figure 31: Y = 5.9611X vs. Y = 

5.9625X.  This option of being able to generate 

a R2 = 1 equation from a single point (ED), will 

become invaluable as we continue to predict 

our way into biological complexity. 
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Figure 32 Given an enzyme density (ED), a R2 = 1 curve 

passing through the origin can be readily generated. 

 

Concluding Comments  

In terms of the big picture, where are we?   

Since DNA is linked to genes, genes to 

molecules, molecules to organelles, organelles 

to cells, and cells …. to organisms, we know that 

connectivity is fundamental to understanding 

biology.  In solving the biology puzzle, we want 

to be able to connect its morphological and 

biochemical parts and then use relationships of 

structure to function to create pathways 

capable of shuttling information back and forth 

between DNA and its products distributed 

throughout all parts of the phenotype.  This 

process is now underway.   

What have we learned so far?   

We know that we can use stereology to 

quantify morphology, biochemistry to quantify 

molecules, and published data to discover that 

biology uses ratios as its central organizing 

principle.  By tapping into this principle, we can 

explore biology with patterns (mathematical 

markers, connection ratios), which, in turn, can 

direct us to biological rules – often expressed as 

R2 = 1 equations.  In turn, these equations, 

which bring diagnosis and prediction into the 

game, will play an essential role as we begin to 

explore the ways in which biology responds and 

adapts to adversity.  

Why is this new approach to analyzing data 

immediately important to biology? 

Since we have now begun the process of 

modifying our human genome with CRIPSR, 

having a robust feedback loop from the 

phenotype – one based on empirical data and 

biological principles – becomes an essential 

ingredient for success and perhaps even for 

survival.      

What type of game are we playing? 

There are two types of games we can play with 

biology: zero-sum (win-lose) and nonzero-sum 

(win-win or lose-lose).  Although the win-win 

option would appear to be the most promising, 

it is rarely used in biomedical research because 

the cost of entry is too high.  It requires shifting 

to a theory structure consistent with biological 

complexity.  By prototyping such a theory 

structure, the Enterprise Biology Software 

Project has been playing a non-zero-sum game 

(win-win) successfully for several years.  Since 

biology already knows the answers to most of 

our questions, the strategy behind our game 

plan is quite simple.  Whenever we construct a 

parallel complexity correctly, biology promptly 

answers our questions.  In effect, we’re using 

the parallel complexity as a communication 

device, wherein mathematics is the common 

language.   

 

Prediction is the game changer…  
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