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SUMMARY 
 

Using methods currently available, estimates for cellular changes often fail to deliver satisfactory levels 

of precision, accuracy, and reproducibility.  This shortcoming can occur, for example, whenever cellular 

data are not referenced to an average cell or a fixed number of cells.  The report attempts to mitigate 

this limitation by first figuring out how to detect local changes in the relationships of structure to 

function at the level of membranes.  Using enzyme densities, which relate enzyme activity to membrane 

surface area, we can extend the data of several publications by generating diagnostic and predictive 

equations.  These equations, which often display R2s = 1, suggest that change in biology is a function of 

well-defined rules applied specifically to molecules populating cytoplasmic membranes.  In mitochondria 

and the endoplasmic reticulum, for example, changes in the molecular profile of a membrane was found 

to be a highly controlled process.  When membranes changed their surface area, they also changed the 

packing density (concentration) of their constituent marker enzymes and their rate constants.  Enzyme 

densities allowed us to follow this complex process of change because they became the variables in the 

rate constant equations.  Data drawn from four publications were used to show how hepatocytes design 

specific membranes when exposed to drugs (phenobarbital), surgical procedures (bile duct ligation), and 

multiple exposures (phenobarbital + bile duct ligation).  In turn, equations were used to transform the 

concentration data of both morphology and biochemistry into data comparable to that of average cells – 

without having to count cells.  These calculations allowed molecular events to be interpreted at the level 

of average cells.  Taken together, these results suggest that new and more effective approaches to 

experimental biology require little more than replicating biology’s rules and recipes for change.  The 

most interesting finding of all, however, was one of connectivity.  Connections between parent DNA 

(nuclear) and its cytoplasmic progeny (RNAs and proteins) exist as relationships of structure to function 

that can be read mathematically from the cell’s organelles.   

 

 

INTRODUCTION 
 

A key requirement of most research papers 

includes an ability to demonstrate a biological 

change.  Herein lies a problem.  Change in 

biology occurs as a continuum of complex 

events occurring across many parts of an 

organism.  Consequently, detecting a change 

becomes a function of knowing where, when, 

and how to look.  
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Ideally, we would like to connect molecular 

events occurring in the genome to the 

downstream expression of these events in the 

phenome.  Such as a task, however, is easier 

said than done.  Many would argue that our 

published data are simply not up to the task.  

Reports suggest that the findings of only 20% to 

30% of research papers are likely to be correct 

(Ioannidis, 2005; Begley and Ioannidis, 2015) 

and that a crisis of confidence surrounds the 

accuracy, precision, and reproducibility of our 

published results (Baker, 2016; Collins and 

Tabak, 2014; Engber, 2016; Freedman et al., 

2015; Roth and Cox, 2015).  According to such 

accounts, we must be doing something wrong.  

What might we do to improve our prospects?     

Why is biology able to solve incredibly difficult 

problems routinely, but we are not very good at 

detecting changes with convincing levels of 

precision and accuracy?  One way of avoiding 

such criticism might be to copy biology’s rules 

and solutions by fitting our published data to 

these rules with R2 = 1 equations.  Since this 

approach worked earlier for controls (Bolender, 

2017), it might also work when cells are 

changing.     

Accordingly, the report reworks the published 

data of several studies with the goal of 

answering questions with R2 = 1 equations.  It 

also explains how to use equations to develop a 

strategy for obtaining rate constants within the 

framework of what appears to mirror the in vivo 

setting.  Recall that rate constants allow us to 

determine rates of change and to predict 

concentrations.  In short, we will approach the 

problem of biological change as a mathematical 

exercise, wherein equations drive the solutions.  

To follow the details of this approach, 

calculation worksheets are bundled with the 

report and posted online 

(playingcomplexitygames.com). 

 

METHODS AND RESULTS 
 

GAME PLAN 

STRATEGY: Biology, chemistry, and physics 

consists of parts and connections that change 

according to rules (first principles).  Recall that a 

change exists as a package containing constants 

and variables subject to rules and measures of 

precision, accuracy, and reproducibility.   

Although events in physics and chemistry can 

be derived routinely from first principles, 

biology has remained curiously resistant to such 

a robust approach.  Why?  Biology encapsulates 

both physics and chemistry on top of which it 

adds living machines capable of obeying the 

rules and creating new ones as the need or 

opportunity arises.  Nevertheless, few would 

disagree with the argument that understanding 

change in biology requires access to the entire 

package of rules if we expect to help and to be 

helped by biology.  

TACTICS: Fortunately for us, physics, chemistry, 

and biology all hide their best kept secrets the 

same way.  Rules and first principles exist as 

complex relationships of constants to variables.  

We become privy to these secrets by figuring 

out the recipes being used by expressing them 

as equations. 

Let’s start with a simple example taken from 

physics.  If we drop a ball from a given height, it 

takes a specific amount of time to hit the 

ground.  This gives us two known variables 

(distance: d, time: t) and one unknown   

constant (k).  The first principle (k) defines the 

relationship of distance to time.  By expressing 

the recipe as an equation and solving it for k, 

we can explain why the distance and time 

variables behave as they do.   

Let’s do the calculation.  If the ball moves 144 

feet in 3 seconds, what is the principle in play?   
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𝑘 = 2𝑑 𝑡2⁄ = 288 𝑓𝑒𝑒𝑡 9𝑠𝑒𝑐2⁄ = 32 𝑓𝑒𝑒𝑡/𝑠𝑒𝑐2 

The answer is the force of gravity (k), which 

defines the relationship of distance to time for 

the falling ball.  To look for precision, accuracy, 

and reproducibility, simply rerun the 

experiment with new sets of variables.  The 

report merely applies such an approach to 

biological changes.             

 

DEFINITIONS 

ENZYME DENSITY: An enzyme density (ED) relates 

units of marker enzyme activity (U) to a unit (1 

m2) of membrane surface area (S): 

𝐸𝐷 = 𝑈/𝑆.    (1) 

Since an ED is expressed as a concentration 

(U/S), it can be used in equations to calculate 

activity (U) and surface area (S) thusly: 

𝑈 = 𝐸𝐷 𝑥 𝑆    (2) 

𝑆 =  𝑈/𝐸𝐷 .    (3) 

RATE CONSTANTS: Recall that a rate equation 

expresses the rate at which a concentration 

changes over time.  As concentrations, enzyme 

densities allow us to evaluate rate equations, 

which are classified according to their order.   

A zeroth order equation is given as: 

[𝐴𝑖] = [𝐴0] ± 𝑘𝑡 ,    (4) 

where [𝐴𝑖] is the concentration at time i, [𝐴0] 

the concentration at time 0, 𝑘 the rate 

constant, and t time.  When concentrations are 

plotted against time, a straight-line indicates a 

zeroth order reaction. 

OVERVIEW: The report briefly summarizes the 

results of a given publication in the usual way 

and then expands its interpretation by 

calculating enzyme densities and rate 

constants.  Such an exercise produces a 

collection of empirical equations with R2 = 1 (or 

R2 ≈ 1), designed to access the rules being used 

by biology.  The publications were selected 

because they described both structural and 

functional changes in hepatocytic membranes. 

 

PAPER 1 

Stäubli, W., Hess, R., Weibel, E.R. (1969) Correlated 

morphometric and biochemical studies on the liver cell. II 

Effects of phenobarbital on rat hepatocytes. J Cell Biol. 

42:92-112. 

EXPERIMENT: Adult male rats were treated with 

phenobarbital (100 mg/day) for five days after 

which samples were taken for morphology 

(stereology) and biochemistry.  The results 

displayed in Figure 1 corrected the original data 

for section artifacts (Weibel and Paumgartner, 

1978) and referenced them to one gram of 

liver. 

ORIGINAL DATA: Figures 1 and 2 summarize the 

changes in ER membranes and ER marker 

enzymes induced by phenobarbital. 

 

Figure 1  Phenobarbital induced changes in the surface 
areas of hepatocytic membranes – per gram of liver.  The 
original data were corrected for section artifacts and 
related to one gram of liver.  [er = endoplasmic reticulum; 
ser = smooth-surfaced er; rer = rough-surfaced er]  
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Figure 2  Phenobarbital induced changes in marker 
enzymes (Enz) of the endoplasmic reticulum (ER) expressed 
per gram of liver. 

Notice in Figures 1 and 2 that the ER 

membranes and their constitutive marker 

enzymes changed differently at different rates, 

suggesting the absence of a relationship 

between structure and function.  When, for 

example, ER surface area was plotted against 

the activity of cytochrome P450, the resulting 

regression line showed a weak correlation (R2 = 

0.05).   

NEW DATA: If, however, we use the data in 

Figures 1 and 2 to calculate enzyme densities 

(U/S), distinct patterns of connectivity begin to 

appear (Figures 3 and 4).  Over time, biology 

responds to phenobarbital by increasing the 

concentrations of its membrane-bound marker 

enzymes in the ER. 

 

Figure 3  In response to the phenobarbital treatment, the 
enzyme densities increased over time.  To display the 
changes, the nadph-ccr values were multiplied by 100.  

When plotted in Figure 4, the experimental data 

points listed in Figure 3 produce linear curves 

with R2s equal to or approaching 1.  This tells us 

that biology is controlling – very precisely - the 

concentration of enzymes in its ER membranes.  

In effect, the linear equations captured several 

parts of the recipe biology used to solve its 

phenobarbital problem.    

 

Figure 4 When changes in membrane surface areas and 
enzyme activities are expressed as enzyme densities, 
distinct relationships of structure to function become 
apparent.  Notice that the linear equations serve as the 
constants for the variable data points.     

Figure 4 identifies missing values for days 3 and 

4.  Two options exist.  We can either take these 

missing values directly from Figure 4 or 

calculate them from their rate constants (𝑘), 

which represent the slopes of the curves.  

Working through the calculations of the latter 

option will serve to illustrate the simplicity of 

the approach. 

PREDICTIONS: Calculate enzyme densities for days 

3 and 4 of phenobarbital exposure.   

Note that Day 3 of the original paper becomes 

Day 2 here because Day 1 = Day 0 in the rate 

equations.   

Note that the slope is positive (+𝑘) because the 

enzyme densities (concentrations) are 

increasing.  

DAY 3 

Cytochrome P450   (5) 

Cytochrome P450   (5) 

[𝐸𝐷3] = [𝐸𝐷0] + 𝑘𝑡 



5 
 

[𝐸𝐷3] = [1.341] + 0.4223/𝑑 ∗ 2 𝑑  

[𝐸𝐷3] = 2.1856 

n-demethylase    (6) 

[𝐸𝐷3] = [𝐸𝐷0] + 𝑘𝑡 

[𝐸𝐷3] = [0.5487] + 0.147/𝑑 ∗ 2 𝑑  

[𝐸𝐷3] = 0.8427 

NADPH Cytochrome c reductase  (7) 

[𝐸𝐷3] = [𝐸𝐷0] + 𝑘𝑡 

[𝐸𝐷3] = [0.0087] + 0.0018/𝑑 ∗ 2 𝑑  

[𝐸𝐷3] = 0.0123 

Note that Day 4 of the original paper becomes 

Day here because Day 1 = Day 0.   

DAY 4 

Cytochrome P450   (8) 

[𝐸𝐷4] = [𝐸𝐷0] + 𝑘𝑡 

[𝐸𝐷4] = [1.341] + 0.4223/𝑑 ∗ 3 𝑑  

[𝐸𝐷4] = 2.6079 

n-demethylase    (9) 

[𝐸𝐷4] = [𝐸𝐷0] + 𝑘𝑡 

[𝐸𝐷4] = [0.5487] + 0.147/𝑑 ∗ 3 𝑑 

[𝐸𝐷4] = 0.9897 

NADPH Cytochrome c reductase  (10) 

[𝐸𝐷4] = [𝐸𝐷0] + 𝑘𝑡 

[𝐸𝐷4] = [0.0087] + 0.0018/𝑑 ∗ 3 𝑑  

[𝐸𝐷4] = 0.0141 

This completes the data set (see Figure 5).  

 

Figure 5  Using enzyme densities and rate constant 
equations, the missing data points for days 3 and 4 were 
predicted. 

Next, we can use the enzyme densities of Figure 

3 to look at another level of complexity, one 

defined by the relationship of one enzyme 

density to another.  This will tell us something 

about how different marker enzymes are being 

packed in the same ER membrane.   Figure 6 

plots pairs of enzyme densities to show 

quantitatively the relationship of one enzyme 

activity to another.  The slope of the regression 

line identifies the ratio of one enzyme activity 

to another.  For example, the ratio of n-

demethylase to cytochrome oxidase is 1:2.5.  As 

noted earlier (Bolender, 2017), enzyme ratios 

can be used to connect and predict biochemical 

data sets routinely.     
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Figure 6  The R2 values of the linear equations suggest that 
the packing of enzymes in the ER membrane follows 
distinct patterns (rules) defined by ratios. 

When the ratios of the enzyme pairs in Figure 6 

are plotted together in Figure 7, we can see 

how the ER enzymes and membranes 

responded to the phenobarbital.  Notice how 

quickly the membranes designed specifically to 

detoxify the drug became operational.   

 

Figure 7 The relative amounts (proportions) of cytochrome 
P450, n-demethylase, and NADPH cytochrome c reductase 
change in response to phenobarbital.  As reported earlier 
(Bolender, 2011-2017) such ratios are both dignostic and 
predictive.  

SUMMARY: The ER membranes of hepatocytes 

undergo four distinct changes in response to 

phenobarbital.  They: 

1. Increase their membrane surface area 

(Figure 1). 

2. Increase the activity of their membrane 

bound marker enzymes (Figure 2). 

3. Increase the packing densities (enzyme 

densities) of their marker enzymes in the 

membrane (Figures 3, 4).  

4. Change the proportions of their membrane 

bound enzymes in the membrane (Figures 

6, 7). 

Thus far, the analysis of Paper 1 was done 

entirely with concentration data (expressed per 

gram of liver).  Although we have quantified the 

downstream effects of gene expression, the 

results relate just to cytoplasmic membranes.  

However, this is only the first part of the story 

(see Discussion). 

 

PAPER 2 

Denk, H. Eckerstorfer, R., Rohr, H. P. (1977) The 

endoplasmic reticulum of the rat liver cell in experimental 

mechanical cholestasis.  Correlated biochemical and 

ultrastructural-morphometric studies on structure and 

enzyme composition. Exp Mol Pathol:193-203. 
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EXPERIMENT: In adult male rats, double ligation 

and transection of the common bile duct was 

used to induce cholestasis.  The goals of the 

study included determining the influence of 

cholestasis on the structure and function of the 

ER and on the activity of its electron transfer 

systems.     

ORIGINAL DATA: Figures 8 and 9 summarize the 

changes in membrane and enzymes in response 

to the experimental cholestasis.  When related 

to a gram of liver, bile duct ligation increased 

the ER surface area, but appeared to decrease 

the enzyme activities.  Once again, we start with 

seemingly incompatible results. 

 

Figure 8  The surface area of the ER (From Table I; Denk et 
al., 1977) were corrected for section artifacts according to 
Weibel and Paumgartner (1978) and related to one gram 
of liver.    

 

Figure 9  Enzyme activity data from Table II (Denk et al., 
1977) were related to a gram of liver. 

NEW DATA: If, however, we use the data in 

Figures 8 and 9 to calculate enzyme densities, a 

uniform pattern appears.  The concentration of 

the enzymes in the ER membranes – as 

indicated by the enzyme densities – showed a 

persistent decrease in response to the ligation 

(Figure 10).  

 

Figure 10  The enzyme densities were calculated using the 
data given in Figures 8 and 9.  Notice that the packing 
density of the ER marker enzymes decreased substantially. 

When the ED data of Figure 10 were plotted 

(Figure 11), however, the R2 value was only 

0.9715.  If we treat glucose-6-phosphatase as 

an outlier (not a drug-metabolizing enzyme), 

then the R2 value approached 1 (0.9999).  

 

Figure 11  The data of Figure 10 are plotted as regressions. 

Paper 2 included a second study that focused 

on the enzymes of the electron transfer 

pathways (see Table IV in the original paper).  

Similarly, these enzymes were related to the ER 

surface areas of Figure 8 (see Table I in the 

original paper) to generate enzyme densities 

(Figure 12).  When the eight enzyme densities 

were plotted as a regression (ligated liver vs. 

control), the R2 was equal to one (Figure 13).  

Notice that both experiments (Figures 11 and 
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13) produced linear equations with similar 

slopes (0.4454 vs. 0.4292). 

 

Figure 12  The enzyme data (from Table IV) were expressed 
as enzyme densities using the corrected ER surface areas 
shown in Figure 8. 

 

Figure 13  When plotted as a regression, the enzyme 
densities (ED) of Figure 12 displayed a R2 = 1 equation, 
which illustrates the precision and reproducibility of the 
data.  Notice that the relationship of ligated to control 
livers defined the change mathematically as a single ratio 
(1:2.33). 

SUMMARY: Bile duct ligation (cholestasis) and 

hepatocytic ER (based on concentration data):  

1. Ligation increased the surface area of the 

ER (Figure 8), but decreased the enzyme 

activities (Figure 9).  

2. Enzyme densities suggested a decrease in 

enzyme activity per m2 of ER (Figure 10). 

3. When plotted (Figures 11, 13), the enzyme 

densities (control vs. ligated) displayed R2 = 

1 or ≈ 1 (0.9999). 

4. Since cholestasis decreased the packing 

density of the electron transfer enzymes in 

the ER by roughly half, the hepatocytes 

compensated for the loss by doubling their 

ER surface area (Figure 8).    

 

 

PAPER 3 

Krähenbühl, S., Krähenbühl-Glauser, S., Stucki, J., Gehr, P., 

Reichen, J. (1992) Stereological and functional analysis of 

liver mitochondria from rats with secondary biliary 

cirrhosis: Impaired mitochondrial metabolism and 

increased mitochondrial content per hepatocyte. 

Hepatology 15: 1167-1172. 

EXPERIMENT: The mitochondrial functions of 

adult male rats with secondary biliary cirrhosis – 

induced by bile duct ligation – were studied in 

vivo and in vitro.  The goal of the study was to 

determine the mechanism leading to hepatic 

decompensation.   

ORIGINAL DATA: Figure 14 summarizes the 

changes in mitochondrial membranes (inner = 

imim; outer = omim) and their marker enzyme 

activities five weeks after bile duct ligation.  

Everything was related to one gram of liver. 

 

Figure 14 Top: Animals with secondary biliary cirrhosis 
suggest a decrease in mitochondrial membrane surface 
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area.  Bottom: Similarly, mitochondrial marker enzymes 
suggest a decrease in enzyme activity.  

NEW DATA: Starting with the data in Figure 14, 

we can calculate enzyme densities to see how 

the relationship of structure to function 

changed in response to bile duct ligation.  

Figure 15 suggests that the concentration of the 

enzymes in the mitochondrial membranes 

underwent a mixed response to the bile duct 

ligation.  Two enzyme densities decreased in 

concentration (atpase and monoamine 

oxidase), whereas one increased (cytochrome c 

oxidase). 

 

Figure 15  The enzyme densities show how bile duct 
ligation affects the concentration of marker enzyme 
activities in mitochondrial membranes. 

When we plot the data of Figure 15 as a 
regression (Figure 16), we find the best fit 
identifies an exponential equation instead of a 
linear one.  This, however, was to be expected. 

By including data from both the inner and outer 
mitochondrial membranes in the same plot, we 
are mixing the results of two different control 
mechanisms - one associated with nuclear DNA 
and the other with mitochondrial DNA.  The 
result is a complex curve of our own making 
(Figure 16).  By treating the membrane 
compartments separately, however, the 
underlying equations are likely to be linear.  As 
noted earlier (Bolender, 2017), analyzing 
mitochondrial membranes can be problematic.  

 

Figure 16  When the data of inner and outer mitochondrial 
membranes are combined, the relationship of structure to 
function fitted an exponential curve. 

Summary: Cirrhosis induced by bile duct ligation 

affects mitochondria.    

1. It decreased the surface area and the 

marker enzymes of the inner and outer 

mitochondrial membranes (Figure 14). 

2. The enzyme densities, however, showed a 

mixed response. They decreased for atpase 

(imim) and mao (omim), but increased for 

cyox (imim); as shown in Figure 15.   

3. The enzyme density plot (control vs. ligated 

liver) fit an exponential curve with and R2 = 

0.9968.  Such a result suggests that several 

separable complexities may be in play 

(Figure 16).    

 

Paper 4 

Krähenbühl, S., Reichen J., Zimmernamm, A., Gehr, P., 

Stucki, J., (1990) Mitochondrial structure and function in 

CCl4 induced cirrhosis in the rat. Hepatology 12: 526-532. 

EXPERIMENT: The goal of the study was to 

determine whether the impairment of 

mitochondrial function in cirrhosis resulted 

from a decrease in liver cell mass (hepatocytes) 

or from an alteration in mitochondrial 

membranes (inner and outer).  Cirrhosis was 

induced by long-term exposure to CCl4 vapors 

and phenobarbital; some experiments used 

liver perfusion.  The study included both in vivo 

and in vitro experiments. 
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ORIGINAL DATA: In Figure 17, we begin with the 
in vivo data related to the liver, which serves as 
an indicator of liver cell mass.  The 
phenobarbital and CCl4 exposure produced a 
decrease in the surface area of mitochondrial 
membranes and in their constitutive marker 
enzymes.  The same pattern seen earlier (Paper 
3).    

 

Figure 17 Both structural and functional data show a loss 
of mitochondrial membranes and their associated marker 
enzyme activities – about 20 - 30%. 

NEW DATA: When the data of Figure 17 are 

related to a gram of liver, we can calculate the 

mitochondrial enzyme densities (Figure 18).  

The response of hepatocytes to cirrhosis was 

similar for the imim (atpase, cyox), but not for 

the omim (mao).   

 

Figure 18  Cirrhosis had a similar effect on the enzyme 
densities of the inner mitochondrial membrane, but not on 
the outer.  

When the enzyme densities of Figure 18 were 

plotted as a regression, they fit a power curve 

with an R2 ≈ 1 (Figure 19). 

 

Figure 19  The best fit to a power curve describes the 
relationship between the inner and outer mitochondrial 
membranes and enzymes.     

Figure 20 summarizes the results of the in vivo 

experiment.  It shows that cirrhosis produced a 

39% loss of liver cell mass, which was 

compensated for by increasing the packing 

density of the enzymes (i.e., EDs) in the inner 

mitochondrial membrane by 38.6%.   
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Figure 20  In response to the structural and functional 
deficits caused by cirrhosis, the remaining hepatocytes 
increased the enzyme densities of their inner mitochondrial 
membranes. 

The in vitro experiment produced patterns 
comparable to those of the in vivo study, as 
seen in Figure 21.  Enzyme densities showed 
similar differences and both experiments 
produced similar power curves. 

 

 

Figure 21 The in vitro experiment showed patterns similar 
to the in vivo one (Figures 18 and 19). 

Summary: Cirrhosis induced by exposure to CCl4 

and phenobarbital created three problems for 

the liver hepatocytes to solve simultaneously, 

the loss of liver function (cirrhosis) and the 

removal of two xenobiotics (CCl4 and 

phenobarbital).   

1. The lengthy period of exposure to 

phenobarbital (PB) and carbon tetrachloride 

(CCl4) produced a loss of mitochondrial 

function (Figures 16, 17), which was 

compensated for by increasing the enzyme 

densities of the inner and outer 

mitochondrial membranes (Figure 18). 

2. The similarity of the in vivo and in vitro 

results speaks to the compatibility of the 

experimental designs. 

3. Taken together, Papers 3 and 4 identify the 

packing densities of the membrane-bound 

marker enzymes as a key player in the 

compensatory machinery of hepatocytes. 

4. The response of hepatocytes to cholestasis 

depends importantly on the experimental 

methods used to create the disorder (Paper 

3 vs. Paper 4). 

 

DISCUSSION 
 

THE BIG PICTURE 

Biology is a quick study.  As shown in the report, 

it swiftly detected, analyzed, and mounted 

responses to experimental exposures by 

manufacturing new arrays of membranes and 

enzymes capable of dealing with each new 

challenge.  It did so by exercising several 

options.  It modulated the amounts of 

membranes locally (per hepatocyte) and 

globally (per liver), the packing densities of 

enzymes in ER and mitochondrial membranes 

(enzyme densities), and determined the rate at 

which each part changed (rate constants).   

Data taken from the four papers recruited for 

the report helped to show that a biological 

change represents a highly choreographed and 

interrelated series of events.  Presumably, the 
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scripts responsible for triggering a change 

reside in the nuclear DNA, but the process of 

creating and executing the specialized recipes 

capable of producing such complex changes in 

the cytoplasm remains largely a mystery.  

 

CHANGE REVISITED 

Currently, our definition of a biological change 

all too often refers to whatever can be reduced 

to a numerical value and, in turn, shown to be 

significantly different from something else.  The 

validity of such a result is often “confirmed” by 

quoting an independent study with similar 

results.  Although such practices may be 

convenient, they are not necessarily convincing. 

If instead, we argue that a change is what 

biology does in response to a challenge, then 

we are compelled to consider how our methods 

relate to the precision, accuracy, and 

reproducibility of our results.  Specifically, what 

do we have to know about biology to detect its 

changes and to offer reasonable explanations 

thereof?  Since even a simple biological change 

represents the aggregate of many 

interconnected events, our understanding of 

change requires a much greater attention to 

detail.  Table 1 suggests what some of these 

details might include. 

Table 1 A biological change involves:   

1 Relationships of structures to functions (EDs) 

2 Data related to cells (average, fixed number) 

3 Connectivity of parts (ratios) 

4 Data synergies (local and global patterns) 

5 Parts expressed as concentrations (X/Y) 

6 Parts expressed as absolute values (X,Y) 

7 Corrections for experimental biases  

8 Precision, accuracy, and reproducibility 

 

In short, understanding a biological change 

becomes a process of defining new 

relationships of constants to variables – 

expressed locally and globally.  In effect, Table 1 

puts us in the business of deriving biology from 

first principles. 

   

CHANGING THE FOCUS 

In keeping with our ongoing strategy, we begin 

with what we want to do rather than what we 

can do.  Specifically, we wanted to find a rule-

based pathway for detecting biological changes, 

one that extended from livers to hepatocytes to 

organelles to membranes to enzymes to RNA to 

DNA.  Moreover, we wanted to do this without 

the usual limitations imposed by data sets 

subject to low levels of precision, accuracy, and 

reproducibility.  To this end, we elected to copy 

biology’s approach to change, which consists of 

working out solutions with rules derived from 

first principles. 

In the methods and results section, we used 

concentration data to detect changes in 

membranes by identifying a rule at each time 

point (an ED) and then fitted the local rules to 

an equation that identified a first principle (e.g., 

a rate constant).  This approach worked 

because we replaced the varying contents of a 

gram of liver over time (unstable cell numbers) 

with an unvarying membrane surface area (1 

m2).  In effect, we nailed down the data 

reference.   

This, however, was only part 1 of the story.  We 

left the larger problem of figuring out how to 

detect biological changes by comparing 

concentrations unresolved.  Now let’s see what 

we can do when we want to solve this problem.   

  

CHANGE – PART 2 

A biological change generates a swirling cloud 

of variables by putting many parts and 

connections in play.  Therefore, progress 
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toward understanding the complexity of change 

is likely to accelerate rapidly as we begin to shift 

our experimental strategy from following a few 

variables to following as many as possible – 

across multiple disciplines.     

This shift in perspective, however, becomes 

disruptive.  Investigators unfamiliar with the 

mathematical properties of biological parts – as 

they exist in control and experimental settings - 

are more likely than not to suffer the 

consequences of being blind-sided.  For 

example, when looking for a significant 

difference between control and experimental 

time points, no one would never dream of 

comparing cell data taken from time points 

derived from representative tissue samples 

containing largely different numbers of cells.  

And yet, this is exactly what is being done 

roughly 50% of the time when we use 

concentrations to detect biological changes 

(Bolender 2001A; Bolender 2016: Figure 1.7).  

Although the ambiguity surrounding 

concentration data is widely understood by 

many investigators, even the best journals 

routinely publish papers reliant largely on 

concentration data.             

FIRST PRINCIPLES:  We can do better by 

implementing a best practices approach.  Let’s 

begin by setting as our goal a solution to the 

problem of detecting changes in the liver from 

the liver’s first principles – starting with the 

allegedly unstable concentrations of 

morphology and biochemistry.     

We can begin by assuming a priori that first 

principles define equations that solve problems: 

1𝑠𝑡  𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒𝑠 → 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 → 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠. 

For our purposes here, two principles will be in 

play: 

1. Biology defines the relationship of structure 

to function for its membranes by rule, and 

that… 

2. The number of hepatocytes in the liver 

remains essentially constant – in both 

control and experimental settings.  This 

second principle can be expected to apply 

to adult animals except when an exposure 

specifically induces important changes in 

cell number. 

Along with the principles, we need to make two 

assumptions: 

1. Estimating the number of hepatocytes in 

experimental settings using current 

stereological approaches becomes 

problematic because (1) reference volumes 

are unstable and (2) changes can occur in 

the number of nuclei per hepatocyte.  

Recall that stereological methods count 

nuclei, not cells. 

2. Estimating biochemical activities by relating 

them to a mg of protein reference works 

equally well in both control and 

experimental settings.  To wit, if biases 

exist, they remain constant. 

To demonstrate the effectiveness of a first 

principles approach, we will use it to figure out 

how to stabilize the concentration data of Paper 

1 (Stäubli et al., 1969). 

THE DATA SET: Figure 22 plots the structural and 

functional data sets of Paper 1 related to a gram 

of liver.  Notice that all the enzymes continued 

to increase (with two of them in parallel), but 

that the ER surface area increased and then 

decreased (statistical arguments aside).    
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Figure 22  Hepatocytes exposed to phenobarbital change 
the surface area of their ER membranes and the activity of 
their membrane-bound marker enzymes.  

Why do the results given in Figure 22 differ 

substantially from those in the original paper?  

[Paper 1 reported that the amounts of 

membranes and enzymes increased far more 

than Figure 22 suggests.]   

Paper 1 used a different reference system for 

the data.  By relating the original concentration 

data to 100 grams of body weight, the authors 

showed that the hepatocytes produced larger 

amounts of new ER membranes and enzymes to 

metabolize and eliminate the drug to which 

they were being exposed (phenobarbital).  Their 

Figures 6, 8, 13, and 16 showed roughly a 50 to 

60% increase in ER surface area with increases 

considerably greater for the enzyme activities.  

The purpose in drawing attention to such 

differences is that it focuses squarely on the 

problem we’re trying to solve.  Apparently, 

everyone gets to decide how to detect and 

interpret a change.  Biology does it its way, we 

do it our way.        

Before continuing, it will be helpful to introduce 

some background information on the liver.  

Recall that hepatocytes are largely responsible 

for mounting responses to foreign substances 

(drugs, toxins, and mutagens).  These cells are 

unusual in that they represent a collection of 

mono and binucleated cells, often displaying 

polyploid nuclei (>2N).  To increase the 

efficiency of its synthetic output, for example, a 

polyploid nucleus can undergo fission and 

become two nuclei.  In effect, one cell 

effectively becomes “two” without resorting to 

cell division, thereby avoiding the risk of DNA 

damage that might otherwise occur during 

mitosis in the presence of toxic substances.  

Once a problem is solved, the two nuclei can 

fuse to become one. 

UNSTABLE DATA REFERENCES: Back to Figure 22.  If 

the hepatocytes get bigger, but the total 

number of hepatocytes in the liver remains the 

same, what happens to the liver?  It gets bigger 

and weighs more.  This is what happened in 

Paper 1 (see its Table I).   

Now for the telling question.  In the 

phenobarbital study of Paper 1, what happened 

to the number of hepatocytes needed to fill a 

cm3 or gram of liver?  As the hepatocytes 

enlarged by adding new membranes, fewer and 

fewer cells were needed to fill the reference 

space (a cm3 or g of liver).  How did this affect 

the experiment?  By diluting the number of cells 

in the reference space (the cm3 or gram of 

liver), the amounts of membranes and enzyme 

activities were likewise diluted.  By relating the 

data to a gram of liver instead of to 100 grams 

of body weight, the results given in Figure 22 

underestimate the extent of the changes by a 

wide margin.     

STABLE DATA REFERENCES: To detect cellular 

changes reliably, the experimental rules in play 

require that we relate our data to an average 

cell or to a fixed number of cells.  Herein lies a 

problem.  Since counting hepatocytic nuclei is 

not the same as counting cells, estimating 

average cell data becomes problematic.  In 

effect, counting cells with stereology is not a 

tempting option. 

What is the solution?  If our inability to count 

cells in intact tissue puts average cell data out 

of play, we are left with the option of keeping 

the number of cells associated with a cm3 or 

gram of liver constant throughout the course of 
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an experiment.  Recall that data related to a 

constant number of cells or to an average cell 

both detect cellular changes equally well.  In 

effect, what we need is an equation that solves 

the problem for us.   

CORRECTED CONCENTRATION (CC) EQUATION: Think 

a moment.  What do we really want?  Ideally, 

we would like to have a single, straightforward 

solution that applies equally well to the 

concentration data of both stereology and 

biochemistry.  Such a solution would require 

collecting concentration data from the same 

number of hepatocytes, which, in turn, were 

extrapolated to the whole liver. 

Since we know that the packing of hepatocytes 

in a cm3 of liver changes in response to changes 

in hepatocytic volume, how might we account 

for these volume changes?  If we assume that 

the observed increases in liver volume (or 

weight) are due entirely to increases in 

hepatocytic volumes, then all we would have to 

do is multiply the concentration by the change 

in liver volume – at each time point (Equation 

11).  Recall that a concentration can be related 

to a weight (gram) or volume (ml or cm3) and 

that volumes and weights become 

interchangeable using the density (ρ) equation 

(𝜌 = 𝑊𝑒𝑖𝑔ℎ𝑡/𝑉𝑜𝑙𝑢𝑚𝑒).  A liver density of 

1.0651 g/cm3 was used for our purposes here.  

The corrected concentration (CC) equation 

using liver weights is given as: 

𝐶𝐶(𝑡𝑖 ) = 𝐶(𝑡𝑖) 𝑥
𝑊𝐿(𝑡𝑖)

𝑊𝐿(𝑡0)
  ,   (11) 

where 𝐶𝐶(𝑡𝑖 ) is the corrected concentration at 

experimental time (𝑡𝑖), C concentration, and 

𝑊𝐿  the weight of the liver at 𝑡0 and 𝑡𝑖.  Equation 

11 corrects for the concentration bias that 

occurs when the hepatocytes filling the 

reference space change their volumes in 

experimental settings.  The equation assumes 

that the changes in liver volume apply entirely 

to changes in hepatocytic volumes.  In effect, 

the corrected concentrations of Equation 11 

detect changes comparable to those related to 

the total liver weight or volume.  This is 

precisely the outcome we wanted because 

changes related to the liver are equivalent to 

changes related to average cells.  In effect, this 

gives us access to average cell information 

without having to count cells. 

 

The next set of figures illustrate changes 

detected with equation 11.  Notice in Figure 23 

that data related to a gram of liver detected the 

smallest change in the hepatocytic volumes, 

whereas the same data related to the liver with 

equation 11 detected the largest; data related 

to 100 grams of body weight gave intermediate 

values.  In effect, Figure 23 shows how the 

results of the same experiment can tell three 

very different stories.        

 

 

 
Figure 23  The same data set from Paper 1 produced 
different results depending on the choice of the data 
reference.     

CORRECTED CONCENTRATION CORRECTED (CCC) 

EQUATION: Equation 11, however, uncovered 

another problem.  Figure 24 shows that the 
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relative changes were greater for hepatocytic 

volumes than for liver weights.  

 

 
Figure 24 By assigning all the changes in liver weight to the 
hepatocytes, these cells showed the greatest increases.  
Relating the concentration (Vhep/g) to the liver (Vhep = 
(Vhep/g) x WL underestimated the change by as much as 
7%. [Hepatocytic volumes or weights (W = ρ x V; ρ = 1.0651 
g/ml) produced similar overestimates.]           

Note that the overestimates for hepatocytic 

volumes were the result of applying all the liver 

changes to just hepatocytes and to the absence 

of the liver volume data coming from the step 1 

sampling (see Paper 1), which was included in 

the first paper of the series (Weibel et al., 

1969).  This explains why Equation 11 needed a 

second correction.              

 

Equation 12 removes the weight of the 

extrahepatocytic space (everything except 

hepatocytes) from the calculation as follows: 

𝐶𝐶𝐶(𝑡𝑖 ) = 𝐶(𝑡𝑖) 𝑥
𝑊𝐿(𝑡𝑖)−𝑊[𝐸𝐻𝑆(𝑡0)]

𝑊𝐿(𝑡0)−𝑊[𝐸𝐻𝑆(𝑡0)]
  , (12) 

Where 𝐶𝐶𝐶(𝑡𝑖 ) is the corrected concentration 

corrected at time 𝑖, 𝐶(𝑡𝑖) the concentration at 

time 𝑖, and 𝑊[𝐸𝐻𝑆(𝑡0)] the weight of the 

extrahepatocytic space (EHS) at time 0 (𝑡0).  The 

equation assumes that this space remains 

constant throughout the experiment.  When 

the data of Figure 24 were recalculated with 

Equation 12, the expected agreement was 

found (Figure 25).  The value used for the 

𝑊[𝐸𝐻𝑆(𝑡0)] correction came from (Weibel et 

al., 1969).   

 

Figure 25 By removing the effect of the extrahepatocytic 
compartment from Figure 24, all the changes in liver 
weight were applied just to hepatocytes.     

The next three figures use Equation 11 to 

illustrate the price we pay for using uncorrected 

concentration data (X/g) to detect biological 

changes.  Imprecise estimates - missing the 

mark by 30% to 50% - diminish both the 

reliability of a result and no doubt dulls the 

effectiveness of statistical tests when looking 

for significant differences. 

Figure 26 reports that the concentration of 

hepatocytes in a gram of liver (Vhep/g) remained 

largely unchanged during the 5 days of the 

experiment, but that the liver became bigger 

and weighed more.  In responding to the 

phenobarbital challenge, hepatocytes enlarged 

to accommodate the growing populations of 

organelles.  Consequently, fewer of them could 

fit into a gram (or cm3) of liver.  This hepatocytic 

change, however, was detected in Figure 26 as 

a 30% increase in liver weight – not as an 

increase in cell volume (or weight).    
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Figure 26  The differences in the changes shown can be 
explained by enlarging hepatocytes exiting the gram of 
liver, in numbers approaching 30%.  

We can readily see the mischief being created 

by the uncorrected concentrations in Figure 27.  

Cytochrome P450 showed a 3.6-fold increase at 

day 5 when related to a gram of liver, but 

jumped up to 5.6-fold when related to the liver 

with Equation 11 – a considerable difference 

(54%). 

 
Figure 27 Relating biochemical data to a gram of liver, 
which is actively losing large numbers of hepatocytes, 
results in underestimating the enzyme activities by more 
than 50%.         

Figure 28 compares estimates for the surface 

area of the ER data related to a gram of liver 

and to a gram of liver corrected with Equation 

11.  Once again, Equation 11 delivered the 

better results.     

 
Figure 28 Changes in cytoplasmic organelles (ER) related to 
a gram of liver progressively lost hepatocytes as the size of 
the cells increased.  The corrected data (CC) recovered 
these lost cells by assigning the changes in liver weight (or 
volume) to the changes in cell weight (or volume).  

TESTING THE CCC EQUATION: If the changes in liver 

volume were allocated to the hepatocytes 

correctly with Equation 12, then the enzyme 

densities based on a gram of liver or on the 

total liver weight should be the same.  Figure 29 

shows this to be the case.  It duplicates the 

results shown in Figure 4.  

 

Figure 29 The results in Figures 4 and 29 are the same. 

PRECISION AND ACCURACY: A solution to the 

concentration problem (Equation 12) also helps 

to alleviate the precision and reproducibility 

problems that often arise when detecting 

biological changes.  By increasing the separation 

between control and experimental time points, 

equation 12 can be expected to improve 

outcomes when looking for significant 

differences.  It would not be surprising to find 

many published P values shifting from >0.05 to 

≤0.05 or better.   
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Consider, for example, the accuracy in reporting 

changes in cytochrome P450 activity.  Figure 30 

plots the way changes in this enzyme are 

usually reported (per gram of liver) and 

compares it to the same data scaled to the 

increases in liver weight (Equation 12).  Notice 

that the amount of change differed by a 

unsettling 100%, whereas the rates of change 

(the slopes) differed by about 70%.  Might such 

an example shed some light on our current 

problems with precision, accuracy, and 

reproducibility?  Most likely, yes.   

 

Figure 30 Collecting data from the same number of 
hepatocytes (per liver) detected twice as much change 
(compared to the usual gram of liver reference).   

 

MOVING UPSTREAM: PROTEIN TO MRNA 

Since we can use enzyme densities to generate 

rate constants for enzymes in membranes, will 

these data also allow us to generate rate 

constants for the messenger RNAs responsible 

for their production?  In other words, does a 

quantitative relationship exist between the 

copy numbers of proteins (e.g., enzymes) and 

their progenitor mRNA molecules? 

A recent study by Schwanhaüsser et al. (2011) 

undertook a global quantification of 

mammalian gene expression wherein they 

looked at the relationship between the 

synthesis rates of mRNAs and proteins for 

thousands of genes (> 5,000).  They reported 

that housekeeping genes, such as those 

described in this report, tend to have stable 

mRNAs and proteins.  In mouse fibroblasts, for 

example they found that the ratio of mRNA 

molecules to those of protein was 1 to 2800 

with the translation rate of 1000 proteins per 

mRNA per hour.   

If this translation efficiency for mRNA is hard-

coded in the genome and shared by different 

cell types, then dividing one of our enzyme 

densities by 2800 produces a very rough 

estimate for the amount of mRNA associated 

with a given population of protein molecules.  

The result of such a calculation for cytochrome 

P450 is shown in Figure 31.   

If the units of activity of the enzyme densities 

are expressed as numbers of molecules and if 

the protein to mRNA ratio holds, then it might 

be possible to estimate rate constants for 

mRNAs in situ.           

 

Figure 31 Note that this predicted curve for mRNA runs 
roughly parallel to the original cytochrome P450 curve 
shown in Figure 4. 

Figure 31 was included to introduce a process.  

By extending the reach of phenome into the 

genome, rules detected downstream can be 

translated into upstream predictions.  
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Rethinking the traditional direction of 

information flow now becomes a compelling 

idea.  Will it be faster and easier, for example, 

to discover biology’s rules for gene expression 

by moving information from the phenome to 

the genome instead of the usual downstream 

approach?  Will the phenotype with its ability to 

deliver biology’s rules as empirical equations 

give us an edge when we set out to solve 

fundamental problems? 

Paper 1 has yet another hidden gem.  The 

authors reported that average hepatocytes 

responded to phenobarbital by increasing the 

surface area of the RER and the number of 

ribosomes attached to it (Stäubli et al., 1969: 

Figures 8 and 9; Table II).  If these ribosomes 

newly attached to the ER are loaded with 

mRNAs specific to the hepatocyte’s drug 

metabolizing recipe for phenobarbital, then the 

rate of ribosomal attachment also reflects the 

recipe’s rate of mRNA synthesis (transcription).  

If we use the first and second time points (0 h, 

16 h), the rate constant for the attachment of 

ribosomes to the ER predicts the arrival of 1,511 

new ribosomes per hour per average 

hepatocyte.  If, as Schwanhaüsser et al., (2011) 

reported for fibroblasts, hepatocytes also 

produce about 1000 proteins per ribosomal-

bound mRNA, then the biological recipe for 

responding to phenobarbital during the first 16 

hours of exposure might produce as many as 

1.5 million proteins (i.e., drug metabolizing 

enzymes) per hour per hepatocyte.  In effect, 

estimating rate constants for molecules in intact 

tissues - per cell or per organ – might provide a 

host of new insights into the control 

mechanisms of gene expression.      

 

CHANGE – THE MANY OPTIONS 

When we compare the results of several 

different data references commonly used to 

detect changes in the liver, the one that detects 

the greatest amount of change – starting with 

the same data - is the liver (Table 2).  

Regrettably, the least successful reference is the 

one most likely to be reported – changes per 

gram of liver. 

Notice in Table 2 that biochemical data 

routinely display R2 values considerably better 

than those of the morphology.  Unfortunately, 

this is to be expected because of the volume 

distortions associated with specimen 

preparation for stereology.  As shown in an 

earlier report (Bolender, 2013), data 

characterizing living samples tend to perform 

better than those from nonliving sources.       

Table 2 Data references determine the amount of change 
detected, along with precision and accuracy.  The 
underlined values represent the largest change or best R2 
value.  Data adapted from Paper 1. 
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NEW INSIGHTS 

By applying a first principles approach to our 

research programs, biology becomes 

progressively hardened as a science.  When 

applied to the data of Papers 1 to 4, for 

example, biological rules allowed us to burrow 

into the mechanisms of change thereby giving 

us a much better idea of how to interact 

effectively with published data.    

PRODUCTS OF RULE-BASED DATA (DERIVED FROM 

PAPERS 1-4) 

1. Biochemical Homogeneity undergoes 

changes according to rule (𝑑[𝑥]/𝑑𝑡 = ±𝑘).  

Data fitted to such rules display diagnostic 

and predictive properties (Figures 4, 5, 7).  

2. Rate Constants define relationships of 

structure to function – consistent with 

biology operating by rule (Equations 4-10). 

3. Unique Signatures occur when several 

enzyme densities combine to form distinct 

patterns as ratios (Figures 7, 19, 21). 

4. Control Mechanisms expressed as 

nonlinear plots suggest that multiple rules 

are in play (Figure 19, 21). 

5. The similarity between in vivo and in vitro 

equations provides reassurance (Figures 19, 

21). 

6. An adaptive response to the loss of 

membrane function can include an increase 

in the enzyme packing density of the 

remaining membranes (Figure 20).   

7. Morphological and biochemical 

concentrations can be corrected to mimic 

average cell data with the same equation 

(Equation 11 or 12). 

8. Interpreting complex biological changes 

requires mathematical collaboration 

between morphology and biochemistry 

(Figures 3-7, 10-13, 15-16, 18-20, 21, 29, 

32).  

 

 

CONCLUDING COMMENTS  

Designing an experiment is akin to preparing a 

test question, which we then give to biology to 

answer.  After running the experiment, our job 

is to use the resulting data to figure out how 

biology answered the question.  A second test 

belongs to the investigator, who decides on 

what data to collect and how to interpret them.       

The papers included in the report demonstrated 

that biology delivered first rate answers to all 

the questions we asked, often quite precisely 

(R2 = 1 or R2 ≈ 1).  Biology followed a two-step 

procedure.  First, it created a recipe for a new 

membrane to answer the question and then 

grew the answer over time by expanding its 

surface area and composition.  It changed by 

changing the packing densities of membrane-

bound enzymes, the amounts of membranes 

and organelles, the volumes of cell 

compartments, and the weights of livers.  Some 

events were local, others global.     

It’s fair to say that biology’s answers to our 

questions required the creation of complex, 

quantitative relationships of structure to 

function.  We captured these relationships as 

enzyme densities (concentrations) and used 

them to calculate rate constants, which, in turn, 

allowed us to predict morphological and 

biochemical data and to workout solutions to 

otherwise troublesome problems.   

Since we know that biology plays an R2 = 1 

game based on clearly defined principles, our 

job now becomes one of capturing these 

principles and applying them as problem solving 

tools.  In effect, we now know what to do and 

how to do it. 

 

ACCORDING TO BIOLOGY, CHANGE CHANGES THE WAY 

CHANGES CHANGE… 



21 
 

REFERENCES 
 

Baker, M. (2016) Is There A Reproducibility 

Crisis? Nature 533, 452–454 (26 May 2016) 

doi:10.1038/533452a; Nature’s Questionnaire 

(2016): http://www.nature.com/polopoly_fs 

/7.36741%21/ 

file/Reproduciblility%20Questionnaire.doc 

Begley, C.G., and Ioannidis,J.P. (2015) 

Reproducibility in Science: Improving the 

Standard for Basic and Preclinical Research. 

CircRes 116: 116126.doi: 10.1161/CIRCRESAHA. 

114.303819 PMID: 25552691 

Bolender, R. P. (2001A) Enterprise Biology 

Software I. Research In: Enterprise Biology 

Software, Version 1.0 © 2001 Robert P. 

Bolender   

Bolender, R. P. (2011) Enterprise Biology 

Software XII. Research In: Enterprise Biology 

Software, Version 11.0 © 2011 Robert P. 

Bolender   

Bolender, R. P. (2012) Enterprise Biology 

Software XIII. Research In: Enterprise Biology 

Software, Version 12.0 © 2012 Robert P. 

Bolender   

Bolender, R. P. (2013) Enterprise Biology 

Software XIV. Research In: Enterprise Biology 

Software, Version 13.0 © 2013 Robert P. 

Bolender   

Bolender, R. P. (2014) Enterprise Biology 

Software XV. Research In: Enterprise Biology 

Software, Version 14.0 © 2014 Robert P. 

Bolender   

Bolender, R. P. (2015) Enterprise Biology 

Software XVI. Research In: Enterprise Biology 

Software, Version 15.0 © 2015 Robert P. 

Bolender   

Bolender, R. P. (2016) Enterprise Biology 

Software XVII. Research In: Enterprise Biology 

Software, Version 16.0 © 2015 Robert P. 

Bolender   

Bolender, R. P. (2017) Enterprise Biology 

Software XVIII. Research In: Enterprise Biology 

Software, Version 17.0 © 2015 Robert P. 

Bolender   

Bolender, R.P. (2016) Playing the Complexity 

Game with Biology. © 2016 Enterprise Biology 

Software Project, PO Box 292 Medina, WA 

98039-0292  

Collins, F.S. and Tabak L.A. (2014) NIH plans to 

enhance reproducibility. Nature 505:612–

613.PMID: 24482835 

Denk, H. Eckerstorfer, R., Rohr, H. P. (1977) The 

endoplasmic reticulum of the rat liver cell in 

experimental mechanical cholestasis.  

Correlated biochemical and ultrastructural-

morphometric studies on structure and enzyme 

composition. Exp Mol Pathol:193-203. 

Engber, D. (2016) Cancer Research Is Broken - 

There’s a replication crisis in biomedicine—and 

no one even knows how deep it runs.  Future 

Tense, April 19 2016 FROM SLATE, NEW 

AMERICA, AND ASU 

Freedman, L.P., Cockburn, I.M., and Simcoe, T.S. 

(2015) The Economics of Reproducibility in 

Preclinical Research. PLOS 

Biology|DOI:10.1371/ Journal.pbio.1002165  

Ioannidis, J.P.A. (2005) Why most published 

research findings are false. PLoS Med 2: e124. 

Krähenbühl, S., Krähenbühl-Glauser, S., Stucki, 

J., Gehr, P., Reichen, J. (1992) Stereological and 

functional analysis of liver mitochondria from 

rats with secondary biliary cirrhosis: Impaired 

mitochondrial metabolism and increased 

mitochondrial content per hepatocyte. 

Hepatology 15: 1167-1172. 

Krähenbühl, S., Reichen J., Zimmernamm, A., 

Gehr, P., Stucki, J., (1990) Mitochondrial 



22 
 

structure and function in CCl4 induced cirrhosis 

in the rat. Hepatology 12: 526-532. 

Roth, K.A. and Cox, A.E. (2015) Science Isn't 

Science If It Isn't Reproducible. AmJPathol 

185:2–3.doi:10. 1016/j.ajpath.2014.11.001 

PMID:25529794 

Schwanhaüsser, B., Busse, D., Li, N., Dittmar, G., 

Schuchhardt, J., Wolf, J., Chen, W., Selbach, M. 

(2011) Global quantification of mammalian 

gene expression control. Nature 473: 337-342. 

Stäubli, W., Hess, R., Weibel, E.R. (1969) 

Correlated morphometric and biochemical 

studies on the liver cell. II Effects of 

phenobarbital on rat hepatocytes. J Cell Biol. 

42:92-112. 

Weibel, E.R., Stäubli, W., Gnägi, H. R., Hess, R. 

(1969) Correlated morphometric and 

biochemical studies on the liver cell. I 

Morphometric model, stereologic methods, and 

normal morphometric data for rat livers. J Cell 

Biol. 42:68-91.  

Weibel E. R., Paumgartner D. (1978) Integrated 

stereological and biochemical studies on 

hepatocytic membranes. II. Correction of 

section thickness effect on volume and surface 

density estimates. J Cell Biol. 1978 77: 584-597. 


