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PREFACE 
 

Is it possible to solve biology?  Yes, but the 

answer we want involves rethinking the way we 

approach biology as a science. 

As a product of nature, biology adheres to a 

theory structure governed by well-established 

rules.  Such rules – unknown to us for the most 

part - have a direct bearing on how we collect, 

express, and interpret our data.  Of interest to 

us here is to figure out how to play biology’s 

game according to biology’s rules.   

 

THE PACKAGE 

Solving biology begins by addressing the 

complexity problem.  To do this, we will need 

access to biology’s package of skills along with 

directions explaining how to find, interpret, and 

use them.  The package includes a skill set 

designed to manage stability and change within 

the context of precision, accuracy, diagnosis, 

prediction, and reproducibility.   

The plan is as follows.  We’ll collect reprints 

from the biology literature, transfer the data to 

a relational database, recover the missing 

connections and complexities, generate 

universal biology databases, use these 

databases as parallel complexities to copy 

biology’s rules, apply the rules to access the 

package, and then begin the process of solving 

biology.  The primer explains the process and 

serves as a guide for the beginner.     

 

THE OPTIONS 

Currently, we have two research options: Plans 

A and B. 

PLAN A: Biology, chemistry, and physics all share 

the same theory structure, called reductionism.  

It simplifies a complexity by taking it apart so 

that we can study the properties of the 

individual parts.  If we understand the parts, the 

theory argues, we can understand the 

complexity because the whole is equal to the 

sum of the parts. 

When applied to a complexity such as biology, 

however, this theory is not a good fit with 

reality because the whole turns out to be 

greater than the sum of its parts.  By reducing 

biology to just a collection of parts, we 

deliberately discard two of biology’s key 

properties - connectivity and complexity.  This 

amounts to throwing away more than 50% of 

what biology has to offer us.  In return for the 

many conveniences provided by reductionism, 

we pay a steep price.  The remaining data, 

which characterize the parts, tend to be noisy, 

biased, and incomplete – hardly up to the 

demanding task of solving biology.   

One of the incentives for writing this primer 

was to come up with a workable plan B.     

PLAN B: The alternative plan starts with a wish 

list determined to leave the limitations of Plan A 

far behind.  Instead, we want biological data 

that are quiet (displaying little or no variation), 

largely unbiased, and nearly complete.  

Moreover, we also want unfettered access to 

biology’s package.  To go from Plan A to B, we 

will have to figure out how to make the 

transition from a theory structure based on 

reductionism to one based on complexity.   

Accordingly, we can proceed by setting out two 

primary objectives for the primer.  It must first 

explain how to give biology back its missing 

connections and complexity and then make a 
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convincing argument for the plausibility of 

solving biology mathematically.  This will 

require showing that taking biology apart 

produces one result, whereas putting it back 

together produces a different but much better 

result. 

TOWARD A COMPLEXITY THEORY: If progress in 

biology depends on coming up with a more 

realistic theory structure, then how do we 

define it?  Fortunately, we don’t have to 

because it already exists.  We’re just going to 

figure out how to copy the one biology uses.  

Since we know a priori that complexity theory 

works for biology, it follows that it should work 

for us as well.     

By copying instead of inventing, we will come 

face to face with a curious paradox.  When 

playing biology’s game, it turns out that 

complexity makes hard things easier, whereas 

reductionism makes hard things considerably 

harder.  Why?  By requiring assumptions to 

compensate for the data it discards, 

reductionism has a destabilizing effect.  Indeed, 

it bears a large responsibility for the current 

disorderly state of the biology literature.     

Given the facts on the ground, simplifying 

complexity by throwing away vital information 

no longer makes much sense.  Why?  We now 

have the technology and the wherewithal to 

move up to complexity where all the key 

elements can be put in play. 

STARTING FROM FIRST PRINCIPLES: We will start with 

some of the most complex structures of 

biology, disassemble them into their basic parts, 

gather their underlying rules, and then 

reassemble them to discover how biology is 

built on a mathematical foundation.  We will 

use these rules to make discoveries, identify 

first principles, and begin to assemble a new 

theory structure. 

The biology literature comes first.  We’ll reduce 

it to a table of parts (identified by names and 

numerical values), reconnect the parts by 

forming ratios, and then use new data types to 

redefine the literature, to diagnose clinical 

disorders objectively, and to see how biology 

changes and generates complexity.  Such 

training exercises will hone our skills at complex 

problem solving.   

Next, we will attempt something far more 

difficult – explain a biological change from first 

principles.  We’ll begin this task by first using 

data coming from individual animals to show 

how we can use biological variation to unmask 

biology’s reproducibility rules and then 

continue by encouraging biology to explain – 

with rules – how it uses relationships of 

structure to function to bring about complex 

changes. 

Notice where this is leading.  By knowing how 

to explain a biological change from first 

principles, we can work toward the goal of 

characterizing phenotypes with rule-based 

equations.  Such phenotypes become helpful 

because they can ease the much harder task of 

reverse engineering gene expression.     

      

HOW TO USE THIS BOOK 

THE SCOPE: This book picks up where an earlier 

one left off (Bolender, 2016b).  The first book 

took the story only as far as the first level of 

complexity, whereas the primer adds five new 

levels.  This takes us into the meaty part of 

complexity where we get to engage problems 

fundamental to the theory structure of biology.  

These include substantial topics, including 

reproducibility, the postulates of biochemical 

homogeneity, clinical diagnosis, prediction, 

change, and the inextricable relationship of 

structure to function.  By showing that 

mathematical solutions can exist for such 

weighty topics, we will advance toward our goal 

of solving biology.   
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THE BIG PICTURE: The book addresses each of the 

substantial topics listed above as they relate to 

specific levels of biological complexity.  In 

effect, the chapters become training sets 

designed to assist the beginner in seeing how 

biology operates by embedding one complexity 

in another.  Taken together, they supply a 

preliminary view of the big picture.        

Since the primer targets beginners, it cannot be 

an advanced textbook.  However, extensive 

details exist elsewhere (enterprisebiology.com, 

playingcomplexitygames.com).  These online 

resources include yearly reports (2001-2018), 

databases, spreadsheets, worked examples, and 

step-by-step instructions.   

THE STRATEGY: The primer focuses its attention 

primarily on the way biology does things 

mathematically.  The premise underlying the 

Enterprise Biology Software Project, of which 

this book is now a part, is that biology already 

knows the answers to most of our questions.  

Consequently, this reduces our job to one of 

figuring out how to ask questions that biology 

can answer in ways that we can understand 

and, in turn, use to our advantage.   

How does this work?  Biology responds to our 

questions (submitted herein as literature-based 

experiments) by applying rules - the results of 

which we will be capturing and interpreting 

with images, patterns, and equations.  In effect, 

solving biology becomes an exercise in 

upgrading the biology literature in ways that 

allow us to tap into the biology’s clever 

approaches to problem solving.  For us, the 

rules will become equations, which in the 

context of a theory structure, play a key role in 

defining the properties and the standing of a 

science.       

THE BENEFITS: Copying biology as a problem-

solving strategy offers a surprisingly straight 

forward approach to complexity.  In turn, 

complexity offers a wealth of additional 

benefits.  We will use it, for example, to explain 

why many of the problems currently plaguing 

biology are of our own making.  By choosing a 

quantitative approach to biology instead of the 

traditional descriptive one, our job of solving 

problems becomes much easier, more 

defensible, and far more rewarding. 

THE CATCH 22: By operating largely under the 

rules of chemistry, cell and molecular biology 

face an untold number of problems when trying 

to interpret biological data.  During a change, 

for example, knowing what’s happening 

chemically to biological parts does not 

necessarily translate into knowing what’s 

happening biologically.  The problem is one of 

simple versus complex.  While chemistry 

focuses on just parts, biology in real life focuses 

on parts, connections, complexity, and 

emergent properties.  As a result, chemistry and 

biology often tell very different stories for the 

same experiments.   

Nonetheless, we are still expected to take 

biology apart and then use the resulting data to 

interpret complex changes that can occur only 

in an intact, living organism.  Such an impossible 

requirement creates a catch 22.  Our best 

chance of avoiding this catch 22 is to figure out 

how to put biology back together.           

THE THEORY STRUCTURE: All the sciences operate 

according to a theory structure, one that 

includes a collection of guiding principles and 

procedures.  To do biology, however, we need 

at least two theory structures - one to connect 

biology to physics and chemistry (reductionist 

theory), and another one to copy and solve 

biology mathematically (complexity theory).   

Why?  Physics and chemistry operate according 

to rules instigated by the elements of the 

periodic table, whereas biology must 

accommodate rules for both the periodic table 

and a massive table of genes responsible for 

producing and operating phenotypes.  
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Consequently, complexity theory is needed to 

merge the properties of both tables and to 

grasp the relationship of one table to the other.   

In short, the theory structure envisioned herein 

for biology derives from a data-driven approach 

wherein permission and affirmation will – by 

necessity and convention - come from the basic 

principles defined by nature.      
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by a list of recommendations (Morowitz and 

Smith, 1987).   

In turn, the insights, guidance, and enthusiasm 

provided by this workshop led to a pilot study 

 
1 Reprinted in part from Playing Complexity Games 
(Bolender, 2016b). 

(Bolender and Bluhm, 1992) and then to a grant 

from the National Science Foundation (NSF).  

The goal of the NSF grant was to organize the 

published data of biological stereology within 

the framework of a relational database.  This 

grant along with helpful suggestions from the 

NSF provided the foundation for the ongoing 

Enterprise Biology Software Project (2001-

present), which includes yearly progress 

reports, et cetera.  The mission of this project is 

simple, but critical: to provide rigorous and 

objective support to students entering research 

disciplines in the biomedical sciences.   

The success of this project can be attributed to 

the generosity of the stereology community for 

supporting the project and supplying reprints 

for the stereology literature database and to 

the Internet Brain Volume Database (Kennedy, 

et al., 2012) for providing online access to the 

MRI data of patients.  Since many of the secrets 

to understanding biology as a complexity exist 

in the biology literature, we will use the primer 

to explain how to translate these secrets into a 

wide range of solutions.              
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INTRODUCTION 
 

A primer is a little book of instruction designed 

to introduce the beginner to a new subject.  In 

our case, we will use it to explain how 

interacting with biology as a complexity is akin 

to solving it.  The process is well-defined.  

Assemble a literature database, reformat the 

data into parallel complexities, capture 

biology’s rules with equations, and let the 

equations solve the problems.     

Chapter one sets the stage by telling the reader 

what to expect.  By structuring the book around 

levels of complexity, the narrative can focus on 

data, databases, software, and mathematical 

arguments – not as a collection of separate 

players, but instead as a team charged with the 

tasks of reconnecting parts, recovering lost 

information, finding secrets, and delivering 

solutions.  Our strategy becomes the interesting 

part.  When we give biology a problem to solve, 

we will copy whatever biology does in response 

by generating parallel complexities.        

A basic theme pervades the book.  We cast 

biology as a rule-based complexity, one that 

uses parts and connections to define 

relationships of structure to function.  In a 

biological complexity, wherein everything is 

connected mathematically, help will always be 

available wherever and whenever we need it.     

By embracing this premise, we get to use 

biological complexity to our advantage in ways 

that begin to redefine our understanding of 

biology as a science.  This puts us on a collision 

course with the single, biggest intellectual 

challenge biology faces as a science – the 

inevitable shift in our thinking and action from 

descriptive to objective.  The primer will argue 

that the one thing needed to make this happen 

is a willingness on our part to interact with 

biology as a complexity.  If you – as a beginner – 

are willing to give it a try, then you will no 

longer be a beginner.   

Although biological complexity sounds 

daunting, it turns out to be quite the opposite.  

Biology offers unflagging encouragement by 

operating with a clarity based on rules that it 

expresses mathematically.  The whole point of 

mathematics is to make difficult things easier 

and understandable.  As a complexity, biology 

represents the ideal candidate to become a 

quantitative science because it does things by 

rule.  Since we can get our hands on these rules 

by fitting published data to equations, we will 

be interacting directly with the core principles 

of biology.  In effect, we will be deriving biology 

from first principles – following the same 

strategy used so successfully by physics and 

chemistry.         

 

STRATEGIES 

Two linear sequences help to summarize the 

story.  They both start with the literature and 

lead either to principles or to products.   

 

PRINCIPLES 

Biology literature → organization → integration 

→ patterns → equations → rules → principles.  

 

PRODUCTS 

Biology literature → organization → integration 

→ products (patterns, equations, rules, change, 

diagnosis, prediction, and reproducibility). 
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Both sequences describe pathways into 

biological complexity that lead to local and 

global solutions, including verifications. 

 

THE PACKAGE 

The challenge of any science is to be in control 

of the six items listed in the package shown 

below (Figure I.1).  Although biology is the most 

complex of the sciences, it lacks a strategy for 

managing complexity and struggles to make the 

grade with all six skills.  This puts biology on 

shaky ground because such skills are the bread 

and butter of a quantitative science.  

Accordingly, our task of solving biology 

becomes one of sliding our current descriptive 

platform into a quantitative one. 

 

 

Figure I.1 The package.  As a science, biology depends 
importantly on providing investigators with six critical 
skills, which include detecting biological changes, 
reproducing results, assuring the precision and accuracy of 
data, and predicting and diagnosing events.  
Understandably, an exercise in solving biology begins by 
probing the relationship of our structural and functional 
data to these skills.       

It is incumbent on you – the beginner - to 

become aware of the shortcomings of your 

science and to understand that the job of 

setting things right invariably belongs to each 

new generation.  Such is the nature of progress.     

The primer offers the beginner a head start.  In 

biology, we tend to specialize - some 

investigators prefer structural approaches 

(morphology) others functional (biochemistry).  

Consequently, it will be useful for you to know 

how well these two disciplines perform vis à vis 

our list of six essentials (Figure I.1).    

Remember that acquiring the package is the 

prize.  Biology already has it, we want it, but it 

remains stubbornly beyond our reach.  The 

primer explains why this is the case, promptly 

admits defeat, and defaults to the simplicity of 

an approach based on copying the package 

from biology.  We will do this by taking a page 

out of the physicist’s playbook.  When 

encountering an impasse, they come up with a 

new theory structure or tweak an existing one.  

We’ll play the same game, except that we’ll 

leave it up to biology to change the rules and 

supply us with a new theory structure.  Since 

biology already possesses all the skills listed in 

the package, we will argue that it is the most 

qualified to become our mentor and role 

model.                         

 

LEVELS OF COMPLEXITY 

Although we describe the biological hierarchy 

as a collection of parts, ranging in size from 

molecules at one end to organisms at the other, 

biology prefers to arrange its operation 

hierarchically as continuous sets of complexities 

embedded in complexities.  This works to our 

advantage because solutions (expressed as 

patterns or equations) will exist everywhere we 

look.   

By copying biology, we will be able to upgrade 

our traditional biological hierarchy of parts to 

one of complexity by bundling both parts and 

connections within the same quantitative 

framework.  Such an approach sets the stage for 

generating outcomes based on generalizations, 

rules, and first principles.   

Thus far, we can identify six levels of complexity 

populated with specific data types, equations, 

and solutions.  Level 1 involves quantitative 

patterns relating structure to structure or 
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function to function, whereas levels 2 to 6 focus 

on relationships of structure to function.   

What do these levels contribute?  When we 

want to detect and interpret a biological change 

such levels unfold a complexity into well-

defined sequences of interpretable events.  The 

story of how a biological change occurs is a 

compelling one because it lets us open and look 

inside the black boxes that continue to be 

largely responsible for generating our 

experimental results.  Instead, we will interpret 

a biological change as it cascades from one level 

of complexity to the next by collecting the rules 

as they come into play.  Such an exercise is 

helpful because we can use it to show how 

quickly discovery leads to innovative solutions.      

 

REDISCOVERING BIOLOGY 

We are beginning to understand that discovery 

in the life sciences depends increasingly on our 

having ready access to substantial amounts of 

published data that we can reformat and filter 

in ways designed to target and deliver robust 

solutions with staying power.   

Since biology organizes itself structurally, we 

will begin the discovery process by upgrading 

the literature of biological stereology within the 

framework of a relational database.  Recall that 

stereology is a method widely used to quantify 

structure.  It includes a collection of design-

based methods based on probability theory that 

estimate quantitative measures of biological 

parts (including, for example, volumes, surfaces, 

lengths, and numbers) from measurements 

made on tissue sections.  The sampling 

methods, which are unbiased and wonderfully 

clever, allow us to make estimates from intact 

tissue samples comparable to the unbiased 

estimates coming from the tissue homogenates 

of biochemistry.  Were this not the case, finding 

quantitative relationships of structure to 

function would not be possible.          

Once designed and populated with published 

data, we can use the stereology literature 

database to begin the process of figuring out 

how to approach biology as a complexity.  The 

first order of business is to assemble enough 

evidence to convince us that structural data 

adhere to an underlying mathematical order.  A 

typical approach to such a task consists of 

fitting data points to equations with regression 

analysis, wherein the gate keeper becomes the 

coefficient of determination (the R2 value).   

We begin with the obvious question.  Will data 

taken from different papers and species sit on 

the same regression line and display R2s equal 

to or close to one?  A yes answer is helpful, a no 

answer is not.  Fortunately, the literature 

provides biological data that fit regression 

curves with R2 equal to or close to one often 

enough to encourage us to push on.   

The next question is a harder one to answer.  

How do we get complexity from a database 

populated with just parts?  What do we do? 

If biology exists as a complexity, then the 

stereology literature database might contain 

such complexities or at least harbor residues of 

their antecedents.  First, however, we need to 

understand what constitutes a complexity.   

The dictionary defines complexity as the 

relationship of parts to connections.  Does this 

mean that we need two types of data – parts 

and connections - to study a complexity?  Yes.  

Do such data exist in the biology literature?  No.   

This tells us what needs to be done next.  We 

must figure out how to add the connections 

back to the parts and then show that the 

resulting complex patterns (parts + 

connections) replicate often enough within and 

across species to be convincing.  In effect, we 
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need to show that reproducibility exists as a 

general property of the biology literature. 

Fortunately, an army of regression equations 

bearing R2s ≈ 1 and passing through or near the 

origin provided the essential clue to the 

connection problem.  Any point on such a 

regression line defines the same numerical 

relationship of one part to another as a ratio 

(x:y).  In effect, the numerical ratio defined by 

the two parts serves to connect them 

mathematically.  This puts connectivity back in 

the game. 

For example, a data pair (ax:by) consisting of 

two parts (a, b) and one connection (x:y) 

defines a complex data type.  To increase the 

complexity of the data type, we simply add 

more parts and connections to the 

alphanumeric string.   

By interpreting these new complex data types 

with programs designed specifically to find 

patterns and complex relationships, we will 

discover that the data types of level 1 

complexity deliver troves of brand-new 

information.  More importantly, they will 

encourage us to dig deeper. 

 

DISCOVERY AND INNOVATION 

As the story unfolds, we’ll be moving from our 

current research platform with its well-

established rules and methods to one where 

the rules, terms, and problem-solving strategies 

remain in flux.  Although at first this may be 

disorienting and even daunting, any initial 

uneasiness will quickly pass.   

As we move into the n-dimensional spaces 

inhabited by biology, things happen differently 

and in ways sometimes inconsistent with what 

we have been taught.  Such a passage, 

however, allows us to enter biology’s world 

where it lives and routinely solves problems 

that to us – looking from the outside - can 

appear unfathomably difficult.  By taking a 

“down the rabbit hole” approach to discovery 

and innovation, we can escape the limitations 

of our current reality and step onto new 

platforms operating under theory structures 

already thoroughly vetted by biology.  The 

following examples of this seemingly curious 

strategy will help.   

 

BIOLOGY LITERATURE 

Our first job consists of opening the scientific 

literature.  This requires changing its 

configuration from that of a holding cell for our 

research data to an interactive and productive 

research tool.  Instead of having to track down 

data by laboriously browsing through piles of 

research papers and then translating the 

collected data into usable forms, we want all 

the data to share the same format and to be 

universally connectable and searchable.  

Assembling and using such universal biology 

databases becomes one of the first things you 

will learn to do.   

 

DIAGNOSIS 

Since universal databases adhere to biology’s 

rules of organization, we can use them to 

explore solutions to uncommonly difficult 

problems.  Consider, for example, clinical 

diagnosis.  Even the most knowledgeable of 

physicians routinely disagree with their 

colleagues on a given diagnosis because 

disorders display so many of the same 

symptoms.   

This triggers the obvious question.  Is it possible 

to upgrade clinical diagnosis?  To answer this 

question, we must figure out how to extract the 

diagnostic skills of thousands of highly skilled 

physicians, quantify these skills, and store them 
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as diagnostic codes (alpha-numeric strings) in a 

database.  In turn, we can use the database as a 

diagnostic tool to identify a disorder by solving 

the complexity puzzle presented to us by a 

patient.  The hard part of this problem will 

consist of coming up with an acceptable 

solution to a central problem of clinical 

diagnosis – the glut of uncertainty produced by 

false positives and false negatives.     

We will use this case study to introduce you to 

the topic of big data as it applies to clinical 

diagnosis.  Moreover, you will get to see how 

biology constructs itself - by rule - in health and 

disease and how we can use such rule-based 

constructs as unique identifiers.         

  

CHANGE 

A biological change often appears chaotic 

because it defines a time when the rules are 

changing.  The central challenge in explaining a 

change begins by developing the skills needed 

to capture the rules biology applies – when, 

where, and for how long.  Having such a skill 

set, for example, will make it possible for us to 

reconstruct the quantitative phenotypes 

needed to explore and reverse-engineer gene 

expression.   

One of the major challenges of 21st century 

biology will be to explain the relationship of the 

genome to its highly adaptable phenotypes.  

Although change is somewhat of an advanced 

topic for a primer, it will be included because it 

provides a hands-on opportunity for you to try 

out your newly acquired package of biology-

based skills.  

  

BASIC ASSUMPTIONS 

WORKING DEFINITIONS 

Basic truths can serve an important function by 

defining the ground rules under which the 

primer operates.  They are as follows:   

• Biology exists as a complexity. 

• Organization is the first step to 

understanding complexity.   

• Solving biology is an exercise in exploring 

complexity by creating complexity. 

• Biology already knows much of what we 

want to know. 

• All three sciences – physics, chemistry, and 

biology - can be derived from first principles. 

• The one language shared equally by the 

natural and physical sciences and by those 

wishing to study them is mathematics. 

• In the sciences, rules of evidence can include 

R2 = 1, R2 ≈ 1, diagnosis, prediction, and 

reproducibility. 

• What’s true for the individual is true for the 

population. 
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CHAPTER 1  

LEVELS OF COMPLEXITY 
 

Solving biology is an exercise in solving 

complexities by creating complexities.  The 

process consists of using published data to 

create complexities parallel to the ones used by 

biology to solve a given problem.  In effect, we 

recruit biology to solve our problems for us, 

being confident that it has already worked out 

the best solutions.  We can safely assume that 

biology is qualified to do the heavy lifting 

because it knows what rules to apply and how 

to summon the necessary resources.  It 

understands full well that survival depends on 

its ability to adapt quickly and effectively.   

Chapter 1, which introduces the first six levels 

of complexity, tells the story simply and 

succinctly.  Although touching on the central 

themes and principal findings, it keeps details to 

a minimum.  Getting the big picture at the 

outset will make it easier for us to tackle the 

specifics in the ensuing chapters. 

 

1.1 LEVEL 1 – PATTERNS 

 

 

Level 1 complexity includes patterns based on 

either morphological or biochemical data, but 

not both data types together.  Two databases – 

one populated with stereological data 

(Bolender, 2001a) and the other with clinical 

MRI data (Kennedy et al., 2012) supply the raw 

material for generating complex patterns. 

Translating data sets from simple to complex 

begins by collecting all the connectable data of 

a given paper (namely data related to the same 

reference) and, in turn, using them to generate 

all possible permutations of the parts taken 

two, three, or four at a time.  This generates a 

collection of complex data types identified as 

data pairs (ax:by), triplets (ax:by:cz), and 

quadruplets (ax:by:cz:dq).  We call these 

alphanumeric strings mathematical markers.  

Think of them as snippets of phenotypic 

complexity taken from much longer strings and 

networks.  Let’s look at some examples of what 

they can do for us.   

 

1.1.1 BIOLOGICAL BLUEPRINT 

By generating data pairs (ax:by) for all the 

biological parts stored in the stereology 

database, the resulting patterns show how 

biology constructs itself according to a modular 

design.  The patterns, for example, created by 

the data pairs tend to generalize (i.e., many 

duplicates appear) within and across species, 

thereby suggesting that the basic design of 

animal phenotypes is widely conserved.   

It soon becomes apparent that these linear 

strings made up of parts and connections can 

serve as mathematical markers that simplify our 

job of working out solutions to a wide range of 

problems.  For example, they prove to be well-

suited to the task of dealing with diagnosis and 

prediction in clinical settings.  The mathematical 

markers supply not only objective results, but 

they can also deal effectively with the 

uncertainties produced by false positives and 

false negatives.  
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1.1.2 DISORDERS OF THE BRAIN 

When based on subjective judgements, a 

clinical diagnosis often becomes challenging 

because closely related disorders tend to 

display similar symptoms.  Consequently, 

physicians making a given diagnosis all too 

often fail to agree with their colleagues.  A 

workable solution to such a dilemma consists of 

assembling an objective test based on a set of 

patterns generated from the clinical literature.  

By translating the MRI data of the Internet Brain 

Volume Database (IBVD; Kennedy, et al., 2012) 

into mathematical markers, for example, large 

numbers of objective patterns become linked to 

the diagnostic findings of expert physicians.  In 

turn, we can avoid the problem of false 

positives and false negatives by requiring that 

all the mathematical markers associated with a 

given disorder are unique to that disorder.  In 

effect, the database becomes a parallel 

complexity capable of solving the challenging 

problem of clinical diagnosis.   

How does such a diagnostic procedure work?  

The numerical construct consists of 

encapsulating the mathematical markers in a 

data cage, wherein selecting one or more test 

markers therefrom will always result in the 

correct diagnosis because it is the only outcome 

allowed by the design of the database.  Such a 

strategy is deliberate.  It serves to verify the 

effectiveness of thousands to millions of 

markers operating in a well-defined and closed 

setting.    

Notice the strategy of the approach to problem 

solving.  A diagnosis depends on the 

preponderance of the evidence.  If we start with 

a diagnostic database containing millions of 

unique and verifiable markers, then the 

likelihood of diagnosing a patient correctly with 

markers outside the cage will be much 

improved.  In effect, by using a big data 

approach, the data cage attempts to optimize 

the diagnostic process.   

Consider the likely spinoffs of this objective 

approach.  Evidence, for example, is beginning 

to accumulate that the quantitative 

organization of the brain can phenotype the 

state of an individual, analogous to the way a 

fingerprint provides the identity of an 

individual.  Consider the implication of such an 

insight to health care.  

 

1.1.3 HEALTH CARE 

If, as the data cage example suggests, 

mathematical markers offer an effective 

diagnostic tool for disorders, then the brain 

might also be carrying patterns ideal for 

assessing our current and future health.  In fact, 

reports of head scans being used to diagnose 

systemic disorders already exist in the literature 

(Cecil et al. 2008, Guido et al. 2013, Herting et 

al. 2014, Khan et al. 2011, Strassburger et al. 

1997, and Tiehuis et al. 2008).  

With the eventual introduction of portable MRI 

scanners linked to diagnostic databases, routine 

monitoring and feedback could become 

commonplace.  Such a device would compare 

the patterns of an individual’s brain to a library 

of patterns linked to expected behaviors and 

outcomes.  This juxtaposition of the present to 

the past to the future provides an objective link 

between diagnosis and prediction and is likely 

to spark widespread innovation.     

 

1.1.4 GOLD STANDARDS 

A frequent – although questionable - practice of 

biomedical research is the willingness to mix 

results coming from living and nonliving 

sources.  However, this creates a problem in 

that each data type and estimate carry unique 

sets of methodological biases.  Stereology is no 
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exception in that it suffers a host of distortions 

that occur when specimens are prepared for 

microscopy (Weibel and Paumgartner, 1978, 

Bertram et al., 1986).   

A solution to the living vs. nonliving data 

problem consists of generating correction 

factors, by allowing data derived from living 

sources to serve as gold standards.  In effect, 

this allows data derived from living and 

nonliving sources to give comparable results.  

Harmonizing data sets makes good sense 

because it sharpens patterns and creates 

bridges spanning methods, publications, and 

levels of complexity.     

 

1.1.5 CONNECTIVITY PATTERNS 

Since biology uses ratios to order its parts, we 

can expect to find patterns of similarity within 

and across species - throughout the literature.  

Moreover, patterns detected with 

mathematical markers provide fresh insights 

into how biology organizes its parts and adapts 

to change.  With molecular biology continually 

reminding us of our shared genetic roots, 

finding persistent patterns among phenotypic 

parts provides a welcome reassurance.  Using 

methods of cluster analysis, for example, we 

will discover that the biology literature contains 

large numbers of highly conserved patterns.    

 

1.1.6 FIRST PRINCIPLES 

When the same pattern repeats across varied 

species and settings, it signals the presence of 

an underlying first principle.  Mathematical 

markers, which were designed to detect 

biological patterns quantitatively, tap into 

biology’s ratios and uses them to define a basic 

unit of biological complexity.  Such ratios, which 

define the relationships of parts to connections, 

identify a first principle of biology.  In fact, 

biology derives much of its complexity from 

ratios. 

 

1.2 LEVEL 2 – BIOCHEMICAL 

HOMOGENEITY 

  

 

Equations play a key role in biological 

complexity by identifying relationships among 

biological variables and constants.  For our 

purposes here, finding an equation locally (it 

exists in one publication) predicts a global 

pattern (it exists in many publications).  This 

means that rule-based equations provide a 

built-in test for reproducibility. 

 

1.2.1 POSTULATES OF BIOCHEMICAL 

HOMOGENEITY 

Our understanding of biological cells and the 

methods we use to study them relies 

importantly on the postulates of biochemical 

homogeneity, as put forward by Christen de 

Duve (1964, 1974) and his colleagues.  These 

postulates state that biochemical activity 

distributes uniformly at a single morphological 

location.  Recall that a postulate - akin to an 

axiom – accepts something as true without 

theoretical or empirical proof.   

Our tacit acceptance of the postulates defining 

the relationship of structure to function in cells, 

however, identifies a new problem for us to 

solve.  In effect, we need to figure out how to 

translate published data into equations that 

capture and test these postulates empirically.  
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Once demonstrated, the postulates can become 

first principles. 

 

1.2.2 MATHEMATICAL RELATIONSHIPS OF 

STRUCTURE TO FUNCTION 

The brilliance behind de Duve’s postulates was 

that they established a quantitative link – albeit 

it a putative one - between a biochemical 

measure (enzyme activity) and a specific 

morphological location (cell organelle).  

Although the postulates contained the key 

elements needed to connect the phenotypic 

parts of an organism to their parent DNA, it 

failed to happen because the technology of that 

earlier time was not up to the task of collecting 

evidence from large data sets.  Instead, the data 

of biochemistry and morphology became widely 

correlated, but not connected to one another 

by rule. 

Why not?  We didn’t know where to look.  If, for 

example, we plot the surface area of the ER in 

hepatocytes (estimated stereologically and 

related to a gram of liver) against the 

biochemical activity of an ER marker enzyme 

(also related to a gram of liver), we get a linear 

regression with a very disappointing R2 value.  

Few, if any, of the data points sit on the 

regression line.  Since such an outcome is 

typical of structure-function plots, the very 

existence of such a relationship remained 

tentative.  There was, of course, an alternative 

explanation.  What if biology doesn’t do 

relationships of structure to function the way 

we do them?            

If, instead, we recall that biology likes to 

organize itself with ratios, we can follow this 

clue, adhere to the postulates of biochemical 

homogeneity, and rerun the regression.  Now 

we can get an equation with an R2 = 1 (all the 

data points are sitting on the regression line).   

Although such an equation gives the expected 

result, it still needs verification.  When tested, 

however, it passes both the reproducibility and 

prediction tests at the global level.  This tells us 

that we can capture relationships of structure 

to function with equations capable of copying 

biology’s rules.  In short, level 2 complexity 

explains how biology expresses relationships of 

structure to function mathematically – by rule.   

 

1.3 LEVEL 3 – ORGANELLE CHANGES 

 

 

We – all of us – have been taught how to 

compare two states of a part – control and 

experimental – to see if the part changed.  For 

biology, however, changing a part is a much 

bigger operation involving individual changes in 

parts and connections at multiple levels of 

complexity.  If we want to view a change 

through biology’s eyes, then we need to copy 

what biology does at all the levels of complexity 

in play.  In effect, complexity levels 3 to 6 

attempt to explain – at least as a first 

approximation – how biology engineers a 

change.   

The understanding to take from the complexity 

levels exercise is that detecting a change in a 

biological part the usual way by quantifying the 

behavior of a selected part does little to explain 

what in fact happens.  Although the widely 

accepted approach to detecting biological 

changes involves black boxes and assumptions, 

the alternative strategy we will be using here 

relies instead on equations, transparency, and 

reproducibility.   
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1.3.1 STEADY STATE (CONTROL) 

To understand how a biological change occurs, 

we will look at the rules in play during three 

states: steady state (no change), transitional 

state (changing), and new steady state (change 

completed).  Let’s tackle the hard one first – the 

steady state in the control.  Although the 

equations of Level 2 can demonstrate that 

quantitative relationships of structure to 

function exist, we have yet to present enough 

empirical evidence in support of de Duve’s 

postulates (i.e., that membrane bound marker 

enzymes distribute uniformly at a single 

morphological location).   

For the postulate to be correct, we would at 

least have to show that the marker enzyme 

activities distribute equally across both the 

rough and smooth-surfaced components of the 

ER.  In other words, the ratio of the enzyme 

activity associated with a unit of SER surface 

area (1 m2) should be the same as the enzyme 

activity associated with a similar unit of RER 

surface area.   

 

1.3.2 THE BIOCHEMICAL HOMOGENEITY TEST 

To run the homogeneity test, we need to write 

simultaneous equations that solve for the 

concentrations of the enzymes in the smooth 

(SER) and rough (RER) membranes of the 

endoplasmic reticulum (ER).  However, the 

results of this test showed that the SER 

membranes had a 7% higher concentration of 

the marker enzymes than those of the RER 

(P=0.0056).    

Does this finding of a heterogeneous 

distribution of a marker enzyme on the two ER 

subcompartments disprove the uniform 

distribution (homogeneity) postulate?  No, not 

at all.  The RER loses membrane surface area to 

ribosomes that are bound to it, but not to the 

SER.  It seems more likely that the 7% difference 

between the two enzyme densities estimates 

can be explained by the amount of RER 

membrane allocated to the ribosomal 

attachment sites.  In short, the principles of 

biochemical homogeneity appear to be on solid 

ground – empirically. 

Notice that level 3 complexity (change) depends 

on the underlying complexity of level 2 

(biochemical homogeneity).  Every time we fold 

in a new level of complexity, new opportunities 

arises.  Biology already knows this and makes 

effective use of it.  To have connectivity across 

complexity levels, the order of a given level 

must extend to both the previous and 

subsequent levels.  This folding of complexity – 

one level embedded within another – explains 

how complexity changes as it cascades up and 

down biology’s hierarchy of size.  It follows that 

such a Gordian knot should be allowed to untie 

itself.    

 

1.4 LEVEL 4 – RATES OF CHANGE 

 

 

Since biological cells derive their properties by 

repeatedly embedding complexities within 

complexities, a change changes many things.  

Not the least of which, of course, are the rules 

in play.  By introducing the variable of time into 

the mix, cells unleash a host of cascading 

variables wherein seemingly endless arrays of 

changes are occurring within changes.  

Complexity becomes rampant.  That said, it 

follows that capturing the rules as they appear 

during a biological change becomes an 

important contributing factor to the success of 

an experiment. 
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1.4.1 TRANSITIONAL STATE (CHANGE) 

After triggering a change, the cell turns on a 

complex array of machinery that quickly 

redefines the structural and functional 

properties of its parts and connections.  Once 

the cell adapts to its new reality, the 

transitional state ends, and a new set of steady 

state rules appears.  In effect, changing the 

state changes the rules.   

Figure 1.1 summarizes the process.  It gains 

support from the observation that for a given 

set of parts different mathematical markers 

characterize the control and experimental 

states.  

 

Figure 1.1 As a working hypothesis, we can define a 
biological change as two steady states separated by a 
transitional state.   

A workable approach to the change problem 

begins by treating it as two mathematical 

events occurring simultaneously, both of which 

can be defined by equations.  The first set of 

equations (event 1) treats each experimental 

time point as we did for the control data of 

Level 2 Equations, whereas the second set 

(event 2) focuses on the rate of change 

identified in levels 3 and 4.  In effect, this 

reduces the process of tracking a change to 

looking for linear regressions with R2s equal to 

or close to one.  As expected, level 4 complexity 

depends on the complexities found in levels 2 

and 3.  This is in keeping with the complexity 

embedded in complexity model.    

The equations, for example, will tell us that the 

concentrations of the marker enzymes in the ER 

membranes of hepatocytes change over time 

(event 1) and that the rate of change (event 2) 

is consistent with zeroth order kinetics.  Since 

the regression analysis delivers rate constant 

equations with R2 equal to or close to one, we 

are effectively copying biology’s rules as they 

appear and orchestrate the ongoing change.   

 

1.5 LEVEL 5 – CELL CHANGES 

 

 

In the next two levels, the complexity shifts 

from detecting changes in average cells (level 5) 

to detecting changes in the organs containing 

such cells (level 6).  Using stereology, we can 

estimate average cell data by dividing the total 

cell volume by the number of cells contained 

therein.  Biochemistry does not have a similar 

average cell option and consequently must 

default to making assumptions. 

Level 5 complexity is the point at which many 

research papers run into trouble because 

detecting average cell changes in situ and 

maintaining reliable data references are 

capabilities not available to many of our current 

research methods.  This limitation comes into 

sharp focus once we set out to solve biology. 

The primer describes two attempts to address 

this problem objectively with equations.  The 

first equation takes a slightly convoluted 

approach, whereas the second one leverages a 

biological rule found at level 2 complexity.  
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Nonetheless, they both can produce the same 

result. 

 

1.5.1 DETECTING AVERAGE CELL CHANGES 

We can manage problems encountered at level 

5 complexity by exploiting a connection that 

exists between changes related to average cells 

and to the organ containing these cells.  If the 

number of cells in the organ remains constant, 

both estimates (per average cell and per total 

organ volume) will detect the same relative 

amount of change.   

 

1.5.2 DETECTING CELL CHANGES WITH 

CONCENTRATIONS 

If, during an experiment, the total number of 

cells of interest remains constant (little or no 

mitosis or cell death occurs), but the volume of 

the average cell changes, what happens to the 

cellular content of a cubic centimeter or gram 

of a tissue or organ?  If the volume of the 

average cell decreases, it takes more cells to fill 

a cm3 of reference space, but, conversely, fewer 

cells will be needed if the average cell volume 

increases.  When comparing concentration 

data, both events introduce a bias, which we 

must take into consideration. 

Consider a simplified example.  If the volume of 

the liver increases by 10% all of which can be 

attributed to an increase in the volume of an 

average hepatocyte, then to detect a change 

using concentrations, we would still have to 

compare data coming from the same number of 

hepatocytes.  Since a 10% increase in the 

volume of an average hepatocyte pushes 10% 

of the hepatocytes out of a cm3 of hepatocytes, 

increasing the value of the concentration by 

10% theoretically pushes the cells back in.  We 

can do this because the following statement is 

true.  Comparing changes in concentrations is 

equivalent to comparing changes in average 

cells when the number of cells being compared 

remains constant. 

The advantage of this approach is that the same 

equation works for both morphological and 

biochemical data by providing the equivalent of 

average cell data without having to count cells.  

The equation, however, requires assumptions 

to be discussed later.  The more compelling 

equation would be one that avoids having to 

make assumptions.  Why?  Making assumptions 

is a form of gambling.  

 

1.6 LEVEL 6 – ORGAN CHANGES 

 

 

1.6.1 DETECTING ORGAN CHANGES WITH 

CONCENTRATIONS 

 

The approach used to detect changes in average 

cells detects changes in organs as well. 

Given this brief introduction to the big picture, 

we are ready to introduce the equations that 

we’ll be using to operate within the theory 

structure being copied from biology. 
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CHAPTER 2  

EQUATIONS 
 

Solving biology involves translating published 

data into databases, databases into parallel 

complexities, and parallel complexities into 

equations that capture biology’s rules and first 

principles.  Equations and the routes thereto 

begin to define the boundaries of a complexity 

theory.  

We will discover equations empirically by fitting 

simple and complex data types to linear 

regressions.  When we collect data from 

biology, however, they become cloaked with 

uncertainty because they carry varying amounts 

of methodological biases and are subject to an 

uncertainty principle.  Moreover, by taking 

biology apart, we change biology from a 

complexity to a simplicity and then view it 

through the lens of a theory structure 

convenient to the abbreviated data set.  

Understandably, the way we choose to look at 

our data determines what we will see.     

If our goal is to solve biology, as it is here, then 

we want to see biology in its most pristine 

state.  Since solving biology is largely an 

engineering problem, putting biology back 

together according to biology’s rules and theory 

structure becomes a reasonable way to 

proceed.  The easiest and most direct way of 

doing this is to detect, copy, test, and apply 

biology’s rules as equations.  

Chapter 2 identifies the principle equations that 

apply to each of six levels of complexity.  Such 

equations apply to two broad categories of 

data, one the product of reductionism (biology 

taken apart) and the other of complexity 

(biology put back together).           

2.1 LEVEL 1 – PATTERNS 

 

 

2.1.1 DATA PAIRS 

The simplest unit of complexity consists of two 

named parts and one connection called a data 

pair - the first of several mathematical markers.  

We define it herein as a numerical ratio derived 

from the values of two parts (x, y), along with 

the names of the parts (a, b): 

Data Pair Rule 

𝐷𝑎𝑡𝑎 𝑃𝑎𝑖𝑟 = 𝑎𝑥: 𝑏𝑦,  wherein the     

𝑅𝑎𝑡𝑖𝑜 =
𝑥

𝑥
:

𝑦

𝑥
= 1:

𝑦

𝑥
      (2.1) 

Notice that by dividing both x and y by x, the 

first number in the ratio is set equal to 1.  This 

tells us that one unit of x is associated with 

some number of units y.   

 

2.1.2 MATHEMATICAL MARKERS 

The alphanumeric strings of parts and 

connections create mathematical markers, 

wherein named parts (a, b, c, … , n) combine 

with numerical values (x, y, z, … , n) to form 

complex identifiers (ax:by:cz, … , n).  

Mathematical Marker Rule 

𝑅𝑎𝑡𝑖𝑜 =
𝑥

𝑥
:

𝑦

𝑥
:

𝑧

𝑥
: … 

𝑛

𝑥
   (2.2) 
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Notice that a triplet mathematical marker, 

which consists of three parts and two 

connections, can be arranged six ways: ax:by:cz, 

ax:cz:by , by:ax:cz, by:cz:ax, cz:ax:by, cz:by:ax.  

This turns out to be a particularly useful 

property in that we can expand the size of a 

given data set to include a much larger, all-

inclusive set of searchable patterns. 

If, for example, the rough-surfaced endoplasmic 

reticulum (RER) in a cell has a value of 2 m2, the 

smooth-surfaced endoplasmic reticulum (SER) a 

value of 4 m2, and the plasma membrane (PM) 

a value of 1 m2, we get the following the string:   

rer2:ser4:pm1. 

By dividing all the values by x and removing the 

colons, we get the mathematical marker in 

standard form: 

rer1ser2pm0.5. 

By shifting from absolute values and 

concentrations to ratios, we can minimize both 

bias and variability.  Although some baggage 

remains, there will be less of it (Bolender, 

2016b)  

Why is this new data type useful?  By expressing 

published data as mathematical markers, even 

relatively small data sets can generate larger 

arrays of quantitative patterns.  Moreover, 

collections of such patterns provide surprisingly 

effective approaches to diagnosis and 

prediction, while at the same time they allow us 

to see what biology can do quantitatively.  By 

transforming an otherwise chaotic literature 

into universal biology databases consisting of 

highly organized and objective mathematical 

markers, we get to explore the literature as a 

unified whole.  This allows us to treat the 

biological literature as one big experiment.  

Since everything depends on finding 

reproducible patterns, we’re assembling a 

playing field in anticipation of the more 

challenging mathematical games we will be 

playing shortly.    

Given such a resource, problem solving 

becomes an exercise in creating a database of 

mathematical markers either by applying filters 

to an existing database, or by combining 

markers from several databases.  In all such 

cases, the strategy remains the same.  By 

creating a complexity parallel to the one used 

by biology, we recruit biology to deliver the 

solutions we want.  The better we are at 

copying biology, the better the result. 

 

Mathematical markers will become increasingly 

important as we begin to simulate the complex 

interactions that occur within cells and organs.  

Although we consider here only the 

relationships of markers in one-dimensional 

strings, the universal databases containing such 

markers already suggest that biology is using n-

dimensional networks of strings to run its 

business.  In fact, this is exactly what we would 

expect to find in a highly adaptive and complex 

system, where everything interconnects.    

 

2.1.3 PERMUTATIONS 

Recall the equation for calculating permutations 

(P ), wherein n  is the number of parts and r  

the sample taken [recall that 0! = 1]: 

 

𝑛𝑃𝑟 = 𝑃(𝑛, 𝑟) =
𝑛!

(𝑛−𝑟)!
   (2.3) 

 

For example, 3 parts taken 3 at a time gives 6 

permutations (3 x 2 x 1), whereas 10 parts taken 

3 at a time gives 720 (10 x 9 x 8).   

 

Why is this useful?  The permutation equation 

allows us to reformat the biology literature – 

paper by paper – into a homogeneous data set 

consisting of universally compatible units of 

complexity (mathematical markers).  This 

represents a critical step.  Universal biology 
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databases solve two key problems.  They 

condense the vast contributions of investigators 

into a common, searchable format and open 

lines of communication with biology by creating 

parallel complexities.  Given their universal 

properties, mathematical markers are likely to 

become a favorite vehicle for big data and 

machine learning because they can provide 

optimized training sets.    

 

2.2 LEVEL 2 – BIOCHEMICAL 

HOMOGENEITY 

 

 

A widely accepted principle of living systems is 

that organisms define themselves with 

relationships of structure to function.  Perhaps 

the best-known application of this relationship 

was articulated by de Duve (1964, 1974), who 

gave us the postulates of biochemical 

homogeneity.  They state that a marker enzyme 

is distributed uniformly at a single 

morphological location.    

 

2.2.1 THE BIOCHEMICAL HOMOGENEITY TEST 

Validating the postulates becomes a useful 

exercise for us here because success will allow 

us to dig deeper into multiple levels of 

biological complexity.   

The design of the test is straightforward.   First, 

we translate the postulate into an equation, 

evaluate the equation with published data, and 

finally demonstrate that the equation can 

predict expected outcomes using independent 

data sets.   

The strategy behind the test may be the most 

interesting part.  A successful outcome depends 

on our ability to devise a test so difficult that 

only biology can pass it.  This means that the 

equations we propose must capture biological 

complexity.  If not, we will not get the solution 

we want and expect.  By bringing the notion of 

a parallel complexity into play, we align our 

interests closely with those of biology.  The 

effect of such a strategy is that our job becomes 

that of an observer, leaving the theory 

structures and problem solving up to biology.  

The logic of such an approach seems obvious.  

Why would we want to construct a new wheel 

when a perfectly good one - with a massively 

impressive track record - already exists?   

We want to test de Duve’s homogeneity 

postulates literally and empirically.  To this end, 

we must show that the activity of a membrane-

bound marker enzyme - located at a unique 

cellular location – remains the same from one 

animal to the next when the marker enzyme 

activity is related to a square meter of the 

membrane surface area.  Such a test will serve 

as a good example of how we can operate 

within the framework of a biological complexity, 

which, in this case, will consist of finding 

equations that capture biology’s rules for 

producing membranes of the endoplasmic 

reticulum (ER).       

 

2.2.2 THE STRUCTURE-FUNCTION RULE 

(PART 1 OF THE TEST) 

Since de Duve used the rat liver to develop his 

homogeneity postulates, a similar source will be 

used for our test.  Specifically, we will plot the 

surface areas of ER membranes - most of which 

come from hepatocytes (Blouin et al., 1977) - 

against the activities of marker enzymes bound 

to the ER membranes of these cells.  The 

equation we need relates units of enzyme 

activity (U) to a unit of ER membrane surface 
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area (S).  A general equation (Equation 2.4), 

which encapsulates biochemical homogeneity, 

defines the: 

Structure-Function Rule as 

𝑦 = 𝑓(𝑥);  𝑓(𝑥) = 𝑚𝑥 ,   (2.4) 

where m is the slope of the line and x can be 

either a morphological or a biochemical value.  

Since the y intercept is equal to zero, the line 

passes through the origin (0,0). 

The slope of the line (m) identifies a ratio either 

equal to U/S (an enzyme density, ED = U/S) or 

to S/U (a membrane density, MD = S/U), 

depending on the arrangement of the equation: 

𝑈 = 𝐸𝐷 × 𝑆     (2.5) 

𝑈𝑗 =
𝑈𝑗

𝑆𝑖
× 𝑆𝑖 ,     

𝑆 = 𝑀𝐷 × 𝑈     (2.6) 

𝑆𝑖 =
𝑆𝑖

𝑈𝑗
× 𝑈𝑗       

where i identifies a membrane, j a membrane-

bound marker enzyme, U units of enzyme 

activity, and S membrane surface area. 

If we reinterpret the data of an earlier study 

(Bolender, et al., 1978) by operating on the data 

one animal at a time (Bolender, 2017), we can 

evaluate equations 2.5 and 2.6 using an ER 

surface area and an ER marker enzyme 

(glucose-6-phosphatase); see Figure 2.1.  This 

strategy generates the structure-function rules 

(Equations 2.7 and 2.8), as postulated by de 

Duve: 

G-6-Pase-to-ER (Structure-Function Rule) 

𝑓(𝑥) = 0.1677𝑥   (2.7) 

𝑦 = 0.1677𝑥 ; 𝑤ℎ𝑒𝑟𝑒𝑖𝑛 𝑆 = 𝑀𝐷 × 𝑈  

  

This equation calculates an ER surface area (y) 

from a membrane density (0.1677) multiplied 

by a glucose-6-phosphatase activity (x). 

ER-to-G-6-Pase (Structure-Function Rule) 

𝑓(𝑥) = 5.9625𝑥   (2.8) 

𝑦 = 5.9625𝑥 ; 𝑤ℎ𝑒𝑟𝑒𝑖𝑛 𝑈 = 𝐸𝐷 × 𝑆  

Alternatively, we can calculate glucose-6-

phosphatase activity (y) from an enzyme 

density (5.9625) multiplied by an ER surface 

area (x).  [Note: We can ignore the y intercepts 

displayed in the figures because they are very 

small (0.0011 and 0.0063).]  As we’ll see in 

Figure 2.4, similar results exist for other 

membrane-bound marker enzyme 

combinations.   

 

 

Figure 2.1 The plots identify a linear relationship between a 
structure (ER surface area) and a function (Units of a 
marker enzyme activity).  The data of three animals fit the 
line with an R2 = 1, which closely approximates the origin.  
Notice how we can use biological variation to our 
advantage.  Animal to animal variation is allowing us to 
copy biology’s rules with equations.  Original data adapted 
from Bolender, et.al., 1978; From Bolender 2018. 

The key point is that Figure 2.1 with its 

equations support the homogeneity postulates 

in that the data of three separate animals fall 

on the same line (R2 = 1) and that the line 

essentially passes through the origin.  In effect, 

equations 2.4 to 2.8 show how to capture the 
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rule biology uses to populate ER membranes of 

hepatocytes with molecules of glucose-6-

phosphatase – in a control setting.   

The enzyme density rule, which defines a ratio 

of function to structure, represents a 

concentration wherein the denominator is 

engineered in as a constant (set equal to 1 m2), 

which prevents it from behaving as a variable.  

This gives us a common denominator within the 

cell that will allow us to map and integrate 

phenotypic and genotypic data.        

 

2.2.3 PREPARING FOR PART 2 OF THE TEST 

The second part of the biochemical 

homogeneity test is more challenging in that we 

need to show that the marker enzyme activity is 

uniformly distributed across the membranes of 

the ER – even though the ER contains two 

morphologically distinct ER subcompartments: 

rough- (RER) and smooth-surfaced (SER).   

To this end, we’ll need a few more equations 

along with some background information.  Let’s 

begin.  We want to express an enzyme activity 

relative to an ER membrane surface area – 

instead of relating each measure to a gram of 

liver (Figure 2.1).  This will allow us to look for 

differences in the amount of enzyme activity 

associated with 1 m2 of ER.       

The first equation we need is one that relates 

biochemistry (b) to morphology (m).  Such a 

relationship defines a biochemical density (BD), 

which represents a concentration (b/m) and a 

mathematical relationship of structure to 

function (Equations 2.4 and 2.9). 

Biochemical Density Rule 

𝑏𝑖𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝐵𝐷) = 𝑏/𝑚 . (2.9)     

Note that this rule adheres to the postulates of 

biochemical homogeneity (Equation 2.3) 

wherein: 

Structure-Function Rule 

𝑓(𝑥) = 𝑚𝑥,  

𝑦 = 𝑚𝑥, 𝑚 =
𝑦

𝑥
, 𝑎𝑛𝑑 𝐵𝐷 =

𝑈

𝑆
= 𝑏/𝑚 . 

In turn, we can rewrite Equation 2.9 to 

accommodate our test by substituting marker 

enzyme activities (U) and ER membrane 

surfaces (S).  This gives us the enzyme density 

rule (Equation 2.10): 

Enzyme Density Rule 

𝑒𝑛𝑧𝑦𝑚𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝐸𝐷) = 𝑈/𝑆.  (2.10) 

This rule, which defines the enzyme density 

(ED) as a concentration (U/S), generates various 

outcomes wherein two knowns allow us to 

solve for one unknown: 

𝐸𝐷 = 𝑈 𝑆⁄       (2.11) 

𝑈 = 𝐸𝐷 × 𝑆      

 

Recall that an enzyme density (𝑈 𝑆⁄ ) always 

relates units of enzyme activity to 1 m2 of 

membrane surface area.  This gives us the 

constant reference we need to compare 

changes in EDs, to demonstrate reproducibility, 

and to predict biochemistry from morphology 

(Equation 2.11). 

Similarly, we can express Equation 2.9 in 

morphological terms using the membrane 

density rule (Equations 2.12 and 2.13): 

Membrane Density Rule 

𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑀𝐷) = 𝑚/𝑏 . (2.12)     

𝑀𝐷 = 𝑆 𝑈⁄     (2.13)  

𝑆 = 𝑀𝐷 × 𝑈     

 

Similarly, a membrane density (𝑆 𝑈⁄ ) always 

relates membrane surface area to one unit of 

biochemical activity.  This allows us to predict 

biochemistry from morphology.  Since most 

published papers focus on either structure or 
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function, prediction becomes a powerful tool 

and often a game changer.     

While equations 2.9 to 2.13 describe events 

occurring within the cell cytoplasm, enzyme 

densities can also extend their reach to organs 

by generating absolute values (equations 2.14 

and 2.15).  For example, enzyme densities (ED) 

predict total units (Utotal) from total surface 

(Stotal), whereas membrane densities predict 

total structure (Stotal) from total units (Utotal): 

Absolute Value Rules 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐷 × 𝑆𝑡𝑜𝑡𝑎𝑙    (2.14) 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈/𝑆 × 𝑆𝑡𝑜𝑡𝑎𝑙     

 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑀𝐷 × 𝑈𝑡𝑜𝑡𝑎𝑙   (2.15) 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆/𝑈 × 𝑈𝑡𝑜𝑡𝑎𝑙 .   

 

Notice what we have done so far.  By 

establishing quantitative relationships, we 

enable biochemistry and morphology to do 

things together that they cannot do alone.  In 

other words, the strength of one becomes the 

strength of the other or the strength of one can 

compensate for the absence or weakness of the 

other.  These are the types of relationships we 

want to build into the everyday operation of 

our theory structure.      

Next, we need to look at the strategy behind 

enzyme densities.  An enzyme density (ED) 

relates units of marker enzyme activity (U) to a 

unit (e.g., 1 m2) of membrane surface area (S).  

The important piece of information is the way 

the concentration (U/S) is being defined.  By 

dividing an enzyme activity by a membrane 

surface area given in m2, the enzyme density 

will always be related to one square meter of 

surface area.  This means that the biochemical 

reference (1 m2) at any given point in time 

remains a rock-solid constant.  The packing 

density of the enzymes in the membrane can 

change over time, but not the size of reference 

membrane.  Why?  When U is divided by S, S 

becomes equal to one square meter.  

Why is this helpful?  Using concentrations 

expressed in m2 to detect a change ensures that 

the reference - the denominator of the ratio - 

remains constant.  Biochemical concentrations 

(U/V), for example, referenced to a constant 

volume (V) can become grievously biased when 

the frequency of the cells filling the reference 

volume changes.  Even a slight change in the 

average shape or volume of a cell type can 

result in the movement of surprisingly large 

numbers of cells into or out of this “standard 

unit” of reference volume.  Standard in this 

context refers to a weight or volume, not to the 

contents.  The contents – what’s inside – 

behaves as a biological variable.     

Changes in the contents of a gram or cm3 of 

tissue occur routinely in experimental settings.  

But can such changes alter the outcome of an 

experiment?  Yes, all too often.  Indeed, this 

instability of the reference volume no doubt 

contributes generously to the ongoing crisis of 

precision, accuracy and reproducibility currently 

tormenting the biomedical sciences (Baker, 

2016; Collins and Tabak, 2014; Engber, 2016; 

Freedman et al., 2015; Roth and Cox, 2015).   By 

substituting concentrations based on EDs with a 

constant reference surface (1 m2), we can avoid 

the mischief created by unstable reference 

volumes.    

Now let’s work through a calculation.  If we 

relate the activity of an ER marker enzyme 

[glucose-6-phosphatase (G-6-Pase)] to the 

surface area of ER (both of which are related to 

a gram of liver), we can calculate an enzyme 

density for G-6-Pase: 

𝐸𝐷𝐺6𝑃𝑎𝑠𝑒 = 𝑈𝐺6𝑃𝑎𝑠𝑒/𝑆𝐸𝑅   (2.16)      

𝐸𝐷𝐺6𝑃𝑎𝑠𝑒 =
29.031

4.87
= 5.961𝑈𝐺6𝑃𝑎𝑠𝑒  /𝑆𝐸𝑅, (2.17) 

where 𝑆𝐸𝑅 = 1 𝑚2.        
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Equation 2.17 tells us that 1 m2 of ER surface 

area carries 5.961 units of glucose-6-

phosphatase activity. 

 

2.2.4 STRUCTURE-FUNCTION RULE (PART 2 

OF THE TEST) 

Now we can return to the problem we’re trying 

to solve (the biochemical homogeneity test – 

Part 2).  For glucose-6-phosphatase (G6Pase) 

and the ER, we have three pieces of 

information: the surface areas of the RER and 

SER and the activity of glucose-6-phosphatase – 

all related to a gram of liver.  What we want are 

the individual enzyme densities for the RER and 

SER.  This means that we need to write a 

balanced equation in two unknowns.  Since we 

know from Equation 2.11 that units of enzyme 

activity (U) are equal to the enzyme density (ED) 

times the membrane surface area (S), we can 

write an equation with two unknown 

concentrations: 𝐸𝐷𝑖, 𝐸𝐷𝑗 (Equation 2.16): 

[𝑆𝑖 × 𝐸𝐷𝑖] + [𝑆𝑗 × 𝐸𝐷𝑗] = 𝑈𝑡𝑜𝑡𝑎𝑙 ,  (2.18) 

where 

𝑆𝑖 × 𝐸𝐷𝑖 = 𝑈𝑖   and 

𝑆𝑗 × 𝐸𝐷𝑗 = 𝑈𝑗  , where 

𝑚2 ×
𝑈

𝑚2 = 𝑈 , and 

𝑈𝑖 + 𝑈𝑗 = 𝑈𝑡𝑜𝑡𝑎𝑙 . 

For glucose-6-phosphatase and the ER 

compartments, we can rewrite Equation 2.18 to 

get the one we want for the test (Equation 

2.19): 

[𝑆𝑠𝑒𝑟 × 𝐸𝐷𝑠𝑒𝑟] + [𝑆𝑟𝑒𝑟 × 𝐸𝐷𝑟𝑒𝑟] = 𝑈𝐺6𝑃𝑎𝑠𝑒  .  (2.19) 

Recall that: 

𝑈𝑟𝑒𝑟 + 𝑈𝑠𝑒𝑟 = 𝑈𝑒𝑟  . 

But how do we solve Equation 2.19 for the two 

unknown enzyme densities (EDs)?  If we write 

two such equations populated with data coming 

from two different animals (Equations 2.20, 

2.21) and solve them simultaneously, we can 

expect the resulting linear curves to intersect if 

both animals share the same enzyme densities 

for the RER and SER, but different surface areas 

and total enzyme activities.   

[1.90 × 𝐸𝐷𝑠𝑒𝑟] + [2.97 × 𝐸𝐷𝑟𝑒𝑟] = 27.421   (2.20) 

[1.44 × 𝐸𝐷𝑠𝑒𝑟] + [2.88 × 𝐸𝐷𝑟𝑒𝑟] = 24.267   (2.21) 

Figure 2.2 supplies a graphical solution to 

equations 2.20 and 2.21, demonstrating that 

the lines intersect.  Individual values for the 

EDser and EDrer can be found by extending lines 

from the intersection point to the x and y axes.  

Note that the ED of the SER has a value of 5.77 

and that of the RER 5.54.   

 

Figure 2.2 The ED of the SER is equal to 5.77, whereas that 
of the RER is 5.54 ( Original data adapted from Bolender, 
et al., 1978). 

Since the enzyme densities are almost the same 

(5.8 vs. 5.5), can we conclude that the ER 

membranes are biochemically homogeneous?  

To be on the safe side, let’s run a quick t test.   

If we write equations for three animals, pair 

them two by two to generate three estimates 

for the enzyme densities, then we have enough 

data to run a rough t test.  The results shown in 

Figure 2.3 indicate that the 7% difference 

between the enzyme densities of the RER and 

SER membranes is significantly different (P = 

0.0056). 
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Figure 2.3 The enzyme density of the SER exceeds that of 
the RER by 7% (P=0.0056).  A homogeneous ER appears to 
be the product of two underlying heterogeneities, unless 
we consider the ribosomes of the RER (Original data 
adapted from Bolender, et al., 1978; From Bolender, 2017).   

But why would biology want to maintain a 7% 

difference between the RER and SER?  It may 

not.  Since ribosomes exist on the RER but not 

on the SER, their attachment sites are taking a 

small amount of the ER membrane surface area 

out of play – perhaps as much as 7% of the RER.  

This would seem to be the most likely 

explanation for the observed difference.   

Why is this approach to problem solving with 

simultaneous equations of interest to us here?  

Detecting a biological difference of 7% with a P 

value of 0.0056 seems remarkable given the 

fact that the data came from multiple sources - 

animals, cells, membranes, and enzymes.  Add 

to this the routine appearance of equations 

based on regression lines with R2s equal to or 

close to one suggests we are dealing with a very 

exacting biology.  Biology seems to have figured 

out that defining relationships of structure to 

function by rule improves its chances for 

success and survival.   

 

2.2.5 TEST RESULTS 

Both the data and the equations used for the 

test are consistent with the postulate of 

biochemical homogeneity as stated by de Duve 

(1964, 1974).  It’s important, however, to point 

out that the biochemical data reported 

originally as average data (Bolender et al., 1978) 

had to be adjusted to the membrane surface 

areas of individual animals (Bolender, 2017).  

We will explain in Chapter 4 how such results 

can be verified.         

 

2.2.6 INSIGHTS FROM LEVEL 2 COMPLEXITY 

The equations of Level 2 demonstrate that 

problems related to complex relationships of 

structure to function need equally complex 

solutions.  This means that solving biology 

involves identifying a new generation of 

equations capable of capturing and vetting the 

many rules that define biology.   

Figure 2.4, for example, includes a short list of 

rules (equations) defining such relationships for 

several membrane organelles in control 

hepatocytes.  The table allows predictions both 

ways – structure to function and function to 

structure.  Moreover, duplicating such 

equations across publications becomes a test of 

reproducibility.    

Rules for Membrane Organelles (Hepatocyte) 

 

Figure 2.4 Using enzyme and membrane densities to 
represent biochemical homogeneity, we can predict 
enzymes from surfaces and surfaces from enzymes.  
Original data adapted from Bolender, et al., 1978; From 
Bolender 2017.  [Note: the biochemical data come from 
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tissue homogenates (E + N), collected as E (extract) and N 
(nuclear) fractions.] 

Figure 2.4 raises a fundamental question 

triggered by a central theme running through 

the literature of molecular biology.  Are these 

equations restricted to rat livers, or do they 

have a broader distribution?  Since it appears 

that livers of similar animals, such as rats, mice, 

and humans, share many of the same genes, 

might they also be sharing equations akin to the 

ones shown in Figure 2.4?   Will, for example, 

the similarities and differences in the networks 

of equations needed to capture and simulate 

liver phenotypes tell us more about the 

principles underlying gene expression than we 

might otherwise learn by focusing our attention 

on just genetic constructs?  Is it even possible to 

uncover the deeper secrets of genomes without 

giving more attention to their phenotypes?  

 

2.3 LEVEL 3 – ORGANELLE CHANGES 

 

 

The pattern emerging from the narrative thus 

far is that relationships of structure to function 

are helping us to understand how the biology is 

playing its complexity game.  

Level 3 complexity ups the ante by creating 

playing fields of greater complexity wherein 

biochemical homogeneities (expressed as 

enzyme densities) change over time.  This 

identifies the next problem to work on.    

Let’s review what we know so far.  Plots of 

structure to function produce R2 = 1 equations 

(Figure 2.4) when multiple animals share the 

same enzyme density (e.g., Figure 2.1).  This 

suggests that we start to work on the change 

problem by calculating enzyme densities at 

each of several experimental timepoints to see 

if they change in an orderly way.   

 

2.3.1 STRUCTURE-FUNCTION CHANGE RULE 

Figure 2.5 plots enzyme densities for three ER 

marker enzymes from hepatocytes exposed to a 

drug (phenobarbital) for five days.  Notice that 

the enzyme densities (U/S) changed, but at 

rates unique to each enzyme.  In fact, the 

hepatocytes control the rates at which new 

enzymes become incorporated into their ER 

membranes with near laser-like precision – the 

regression lines carry R2s = 1 or ≈ 1.   

The equations shown in Figure 2.5 identify a 

general rule for biological changes occurring in 

cells: 

Structure-Function Change Rule 

𝑓(𝑥) = 𝑚𝑥 + 𝑏 , where  (2.22) 

𝑦 = 𝑓(𝑥), 𝑚 = 𝐸𝐷, 𝑎𝑛𝑑 𝑥 = 𝑡𝑖𝑚𝑒. 

For phenobarbital (100 mg/kgbw/d/5 days), the 

following rules quantify the biological changes 

occurring in the ER membranes of hepatocytes.   

Structure-Function Change Rule: Cytochrome 

P450 + ER Surface Area 

𝐸𝐷𝑈𝑐𝑦𝑡𝑜𝑃450/𝑆𝑒𝑟
= 0.4223𝑥 + 0.9187 (2.23) 

Structure-Function Change Rule: n-demethylase 

+ ER Surface Area 

𝐸𝐷𝑈𝑛−𝑑𝑒𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑠𝑒/𝑆𝑒𝑟
= 0.1470𝑥 + 0.4017  (2.24) 

Structure-Function Change Rule: NADPH-

cytochrome c reductase + ER Surface Area 

𝐸𝐷𝑈𝑛𝑎𝑑𝑝ℎ−𝑐𝑐𝑟/𝑆𝑒𝑟
= 0.0018𝑥 + 0.0069 (2.25) 

Notice that biological complexity involves the 

embedding of rules (equations) in rules 

(equations).  The two sets of rules are 
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expressed simultaneously: one defines the local 

EDs (Equation 2.4) whereas another determines 

the slope of curve on which the EDs sit 

(Equation 2.22).  A given point defined by one 

rule (Equation 2.4) generates a second rule 

(Equation 2.22) when a change occurs.   

This tells us that by not knowing the rules that 

govern a change, we are reduced to running an 

experiment in a “black box” wherein a cast of 

many variables perform together to deliver a 

highly opaque result – one concentration or one 

absolute value.  We get a result but don’t have 

a clue as to how biology solved the problem.  

Ignoring biology produces another shortcoming.   

We wouldn’t know, for example, that our 

results are several levels of complexity removed 

from where we need to be to make 

mathematical connections within the 

phenotype or to work our way back to events 

occurring in the genome.  In effect, we become 

blindsided by our outdated experimental 

model.      

 

Figure 2.5 The enzyme densities of ER membranes in 
hepatocytes display a highly orchestrated response to the 
drug phenobarbital.  (Original data adapted from Stäubli 
et al., 1969; From Bolender, 2018).     

The equations in Figure 2.5 identify linear 

growth curves that define changes in the 

cytoplasmic membranes (ER) of hepatocytes.  

What triggers such a complex but highly 

orchestrated series of events?  How, for 

example, does biology assemble and execute 

the recipes needed for such changes?  Where 

are these change algorithms located?  How do 

we find them?  

Figure 2.5 shows us that the enzyme densities 

continue to change over time in response to the 

drug – each one at a different rate.  This means 

that duplicating an experimental time point  

represents a far more problematic undertaking 

than duplicating an equation.  The same 

argument applies to looking for evidence of 

reproducibility in the literature.   

Thus far, all we know is what’s happening 

locally at the level of the ER membranes.  Figure 

2.5, however, contains a pivotal clue that takes 

us to the next level of complexity.  The R2s tell 

us that we can use enzyme densities – because 

they are concentrations - to estimate rate 

constants for ER membranes of hepatocytes as 

they exist in situ.  But how do these new rate 

constants compare to those estimated the usual 

way in vitro?  Once again, we’re positioning 

ourselves to ask questions fundamental to 

understanding the complexity of membrane 

changes occurring in living cells.   

 

2.4 LEVEL 4 – RATES OF CHANGE 

 

 

Rate equations define the speed at which a 

concentration changes over time.  When 

plotted against time, the shape of the resulting 

curve identifies the order of the reaction.  The 

linear plot shown in Figure 2.5, for example, 

indicates that we are dealing with a change 

analogous to a zeroth order reaction.   
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2.4.1 RATE EQUATION 

The integrated rate law for a zeroth order 

reaction is given as: 

[𝐴] = [𝐴]0 ± 𝑘𝑡 ,   (2.26) 

where [A] is the concentration a given time, [A]0 

the concentration at time 0, k the rate constant, 

and t the given time.  Since Equation 2.26 

describes a straight line (y = mx + b), [A]0 

becomes the y intercept and k the slope (m).  

Recall that a minus sign (-) identifies a negative 

slope, whereas a plus sign (+) a positive slope. 

For example, to calculate the missing value for 

day 3 in Figure 2.5, we can substitute the 

concentrations of Equation 2.22 with the 

enzyme densities (ED) for Cytochrome P 450 

(Note that the original day 3 becomes day 2 

here because day 1 is equal to day 0 in the rate 

equation): 

[𝐸𝐷]3 = [𝐸𝐷]0 + 𝑘𝑡3   (2.27) 

[𝐸𝐷]3 = [1.341]0 + 0.4223 ∗ 2   

[𝐸𝐷]3 = 2.1856.    

Note that the slopes of the lines in Figure 2.5 

tell us the rate (k) at which enzyme molecules 

are being added to the ER membranes of 

hepatocytes exposed to phenobarbital.  The 

more familiar application of enzyme kinetics 

would include a biochemical test done in vitro 

wherein the enzyme data are related to a mg of 

protein or to a gram of liver.   

 

2.4.2 CONSEQUENCES OF DISCONNECTING 

STRUCTURE FROM FUNCTION 

If instead of plotting changes in enzyme 

densities, what would happen to the rate 

constants if we plot the changes in enzyme 

activities and membrane surface areas 

separately?   

Now the results tell us an entirely different 

story.  Figure 2.6 shows that the rate constant 

for cytochrome P450 compared to its change in 

enzyme density (Figure 2.5) differs by more 

than 10-fold (0.4223 vs. 4.5117).      

 

Figure 2.6 The rate constant (k) for cytochrome P450 
becomes 4.5117 when calculated with biochemical data 
alone (Original data adapted from Stäubli et al., 1969). 

Plotting the changes in membrane surface areas 

gives a similarly disappointing result (Figure 

2.7).      

For a zeroth order event, the rate constants for 

the changes in ER membrane surface area 

display a negative slope (Figure 2.7) with data 

points widely scattered about the regression 

line (R2 = 0.5299).   

Figures 2.6 and 2.7 illustrate the typical risks 

involved when running black box experiments.  

In addition to getting inconsistent results, we 

would be hard pressed to explain why. 

 

Figure 2.7 When ER surface area is plotted against time, 
the rate constant for the ER membranes displays a 
negative slope with an R2 = 0.5299.  Since the cells are 
filling up with ER membranes (mostly SER), they get bigger 
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and fewer of them can fit inside a gram of liver.  In fact, 
after five days of exposure to phenobarbital, hepatocytes 
have about twice as much SER surface area compared to 
the control (Original data adapted from Stäubli et al., 
1969).  

What are Figures 2.5, 2.6, and 2.7 trying to tell 

us?  When we separate structure from function, 

we jettison the safety net provided by biology’s 

rules and end up with inconsistent results we 

can’t explain. 

Although Figures 2.5, 2.6, and 2.7 identify the 

hidden cost of disconnecting structure from 

function, what additional price might we be 

paying for removing the membranes, enzymes, 

and enzyme densities from their hepatocytes?  

How do we reconnect the many parts we have 

marginalized by removing them from their 

original setting in a cell?   

In contrast, the complexity captured with 

equations at levels 2, 3, and 4 provide detailed 

information attached to a quantitative 

foundation.  The phenotype with its ability to 

express a change as a relationship of structure 

to function can also offer the structural support 

needed to interpret genomic data, which derive 

largely from biochemical data (see, for example, 

Alberts et al., 2014). 

Next, we will need to figure out how to put the 

complexities of levels 2, 3, and 4 back into the 

cells where they exist. 

 

2.5 LEVEL 5 – CELL CHANGES 

 

 

2.5.1 DETECTING CELL CHANGES 

There are two ways of detecting how a part 

changes in a cell.  They include calculating 

average cell data or always relating the data of 

organelles or other cell compartments to the 

same number of cells.  Usually, we can estimate 

average cell data by dividing a total organ value 

by the total number of cells contained therein.  

Such a route to average cell data, unfortunately, 

does not work for the liver.  Why?  The 

stereological methods used to estimate cell 

numbers rely on counting nuclei – not cells.  

Liver hepatocytes have several categories of 

nuclei: diploid (2N), polyploid (4N+), and 

binucleated.  Moreover, the frequency of 

binucleated cells in the liver changes routinely 

in response to metabolic demands (hepatocytic 

nuclei can undergo both fission and fusion).  

This means that choosing the average cell 

option for the liver is a non-starter because it 

only adds uncertainty to the results. 

2.5.2 DETECTING CELL CHANGES WITH 

CONCENTRATIONS 

The remaining option for the liver hepatocytes 

is to collect data from the same number of cells.  

Let’s begin by reviewing what we know so far. 

Hepatocytes respond to the drug phenobarbital 

by synthesizing new ER membranes capable of 

metabolizing the drug.  Consequently, the 

hepatocytes must increase their volumes.  Such 

volume increases, however, will quickly 

destabilize the effectiveness of a reference 

based on a gram or cubic centimeter of liver, 

both of which are routinely used as references 

for morphological and biochemical data.  Why?  

The number of cells that can be packed into a 

cm3 of liver depends of the size of the cell - the 

bigger the cells, the fewer are needed to fill the 

reference volume.  [Note: a cm3 of rat liver 

weighs about 1.065 grams; 𝜌(𝑑𝑒𝑛𝑠𝑖𝑡𝑦) =

𝑤𝑒𝑖𝑔ℎ𝑡/𝑣𝑜𝑙𝑢𝑚𝑒.]   
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This means that experimental changes indexed 

to a gram of liver will be the result of changes to 

the cytoplasmic compartments that influence 

cell volume and/or to changes in the number of 

hepatocytes needed to fill a gram (or cm3) of 

liver.  This ambiguity (multiple variables in play) 

sets a trap for the unsuspecting investigator.  

What is this telling us?  By following changes in 

just biochemical or organelle concentrations, 

we ignore the larger complexity of a biological 

change and run the risk of getting incomplete 

and misleading results.  This also tells us that 

concentration data contribute generously to the 

chaotic state of the biology literature. 

One way of resolving this problem of ambiguity 

– being brought about by multiple, 

simultaneous changes - is to maintain the same 

number of hepatocytes filling a cm3 of liver – 

even when the cells increase or decrease in 

volume.  To do this we will allow the original 

control cm3 of liver hepatocytes to swell 

(hepatocytes get larger) or shrink (hepatocytes 

get smaller) – as the need arises.  This 

temporary distortion of reality – a flexible cm3 – 

relies on Equation 2.28 to recover reality and to 

mitigate our concentration problem.         

 

2.5.3 CONCENTRATION CORRECTING 

EQUATION CORRECTED (CCC) 

The equation we want is one that keeps the 

number of hepatocytes associated with a gram 

(or cm3) of liver the same (as it originally existed 

in the controls) – even when an experimental 

setting causes the hepatocytes to become 

bigger or smaller.  To this end, we need to 

assume that the number of hepatocytes in the 

liver remains constant and that all the changes 

in liver weight (or volume) are attributable to 

the hepatocytes.  To introduce a correction 

based on just changes in hepatocytes, however, 

all contributions coming from the rest of the 

liver – the extrahepatocytic compartments - 

must be considered.  This results in a 

concentration equation corrected twice: 

𝐶𝐶𝐶(𝑡𝑖 ) = 𝐶(𝑡𝑖) 𝑥
𝑊𝐿(𝑡𝑖)−𝑊[𝐸𝐻𝑆(𝑡0)]

𝑊𝐿(𝑡0)−𝑊[𝐸𝐻𝑆(𝑡0)]
  , (2.28) 

where 𝐶𝐶𝐶(𝑡𝑖 ) is the corrected concentration at 

time 𝑖, 𝐶(𝑡𝑖) the uncorrected concentration at 

time 𝑖, 𝑊𝐿(𝑡𝑖) the weight of the liver at times i 

and 0, and 𝑊[𝐸𝐻𝑆(𝑡0)] the weight of the 

extrahepatocytic space (EHS) at time 0 (𝑡0).  

The equation assumes that the EHS remains 

constant throughout the experiment. Note that 

the EHS accounts for about 6.8% of the total 

liver volume (Weibel et al., 1969).  

How effective was Equation 2.28 in correcting 

the concentration data?  Figure 2.8 compares 

the concentrations before and after the 

corrections of Equation 2.28 were applied to an 

ER marker enzyme - cytochrome P450.  After 5 

days of exposure to phenobarbital, the enzyme 

activity (expressed as a concentration) showed 

a 3.6-fold increase when related to a gram of 

liver, but a 5.6-fold increase when related to a 

gram of liver containing a constant number of 

hepatocytes – a 54% difference.  Recall that 

bigger differences usually translate into better P 

values, which determine the strength of 

significant differences.   

 

Figure 2.8 Relating biochemical data to a gram of liver, as 
it actively loses large numbers of hepatocytes, can 
underestimate changes in enzyme activities by a 
substantial amount (Original data adapted from Stäubli et 
al., 1969; From Bolender, 2018).          
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2.5.4 INSIGHTS FROM LEVEL 5 

The advantage of equation 2.28 is that it can 

remove the ambiguity associated with both 

morphological and biochemical concentrations 

in experimental settings – without the need to 

count cells.  Although designed originally for 

liver hepatocytes, it should apply as well to 

other cells and organs.  In such cases, the 

results can be checked by counting cells with 

the fractionator (Gundersen et al., 1988) and 

estimating the average cell changes directly.   

 

2.6 LEVEL 6 – ORGAN CHANGES 

 

The least ambiguous way of interpreting a 

morphological change is to relate the data to an 

organ or to an average cell.  At complexity level 

6, we now have two new options for estimating 

a total biological change in hepatocytes without 

having to resort to hierarchy equations or cell 

counts. 

 

2.6.1 DETECTING TOTAL ER SURFACE IN THE 

LIVER (METHOD 1) 

The advantage of Equation 2.28 is that it 

corrects the concentration data of both 

morphology and biochemistry by equating 

changes in average hepatocytic volumes or 

weights (Figure 2.24) to changes in liver volume 

or weight (Figure 2.25):  

𝐶𝐶𝐶ℎ𝑒𝑝 ⇒ 𝐶ℎ𝑎𝑛𝑔𝑒 𝑝𝑒𝑟 𝐴𝑣. 𝐻𝑒𝑝𝑎𝑡𝑜𝑐𝑦𝑡𝑒 (2.29) 

𝐶𝐶𝐶𝑙𝑖𝑣𝑒𝑟 ⇒ 𝐶ℎ𝑎𝑛𝑔𝑒 𝑝𝑒𝑟 𝐿𝑖𝑣𝑒𝑟     (2.30) 

∆𝐶𝐶𝐶𝑎𝑣ℎ𝑒𝑝 = ∆𝐶𝐶𝐶𝑙𝑖𝑣𝑒𝑟        (2.31) 

The disadvantage, of course, is that equation 

2.28 may not work as well when applied to 

other organs with more heterogeneous cell 

populations or when the numbers of multiple 

cell types undergo substantial changes.     

 

2.6.2 DETECTING TOTAL ER SURFACE IN THE 

LIVER (METHOD 2) 

Recall that we can also get information about 

changes in average cells by estimating the total 

amount of ER membrane in the liver with 

equation 2.32: 

𝑓(𝑥) = 𝑆𝑖/𝑈𝑗 × 𝑈𝑡𝑜𝑡𝑎𝑙   (2.32) 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑀𝐷 × 𝑈𝑡𝑜𝑡𝑎𝑙  . 

Where i  is the name of a membrane 

compartment and j that of a membrane-bound 

marker enzyme. 

If, for example, we start with the activity of 

cytochrome P450 and the membrane density 

(MD), we can use Equation 2.15 and the 

available data to estimate the total ER surface 

area in the liver.  After five days of exposure to 

phenobarbital, the liver contains 68.4 m2, 

almost double the amount found in the control:  

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑀𝐷 × 𝑈𝑡𝑜𝑡𝑎𝑙    (2.33) 

𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = 𝑀𝐷 × 𝑈𝑐𝑦𝑡𝑜𝑃450,𝑙𝑖𝑣𝑒𝑟       

𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = (0.3298 𝑚2/𝑈) × 207.3336 U = 68.3840 m2 

Notice that the primary difference between the 

two methods is that they operate under two 

different theory structures.  In method 1, 

morphology and biochemistry work alone, but 

require two assumptions.  In method 2, 

morphology and biochemistry work together to 

generate the same results without having to 

rely on the assumptions of method 1.  The 

lesson?  Copying biology tends to be an easier 

and safer approach to problem solving.      
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Be careful.  Both methods 1 and 2 assume that 

biochemical data collected from microsomes 

faithfully represent total liver values.  

Now that we have worked through the 

fundamentals of approaching biology as a 

complexity, we can look at some of the 

experimental applications.  Bear in mind that 

we will be updating the ground rules for 

running literature experiments to accommodate 

biological complexity.   
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CHAPTER 3  

VISUALIZING COMPLEXITY 
 

Solving biology requires a deliberate process, 

one that involves working out relationships of 

parts to connections to patterns to equations - 

all bridging multiple levels of complexity.  Seen 

from afar, the magnitude of such a task may at 

first appear daunting, but up close one quickly 

discovers that this is the way biology actually 

works. 

Let’s put into perspective what we are trying to 

do.  Complexity in physics and chemistry derive 

from the elements of the periodic table, 

whereas biology must cope with both the 

periodic table and one of its own making – a 

vast table of genes.  If biology has already 

figured out how to deal with all this complexity, 

then the first thing we must do is figure out 

what biology is doing.  Then we can discover 

how.             

In this chapter, we’ll see how solving biology 

represents an iterative process of finding clues 

that lead to more clues that eventually lead to 

solutions.  The persistent challenge, of course, 

includes learning how to recognize the clues 

when they appear.  It’s an acquired skill.      

The process of moving from one level of 

complexity to the next often involves making 

the transition from one database to another.  

The first level of complexity requires large data 

sets because the goal is to gain a mathematical 

footing within a literature database populated 

with just parts data.  Almost immediately, 

reproducible patterns point to an underlying 

order.  Such patterns supply the clues that 

become the stepping stones leading us from 

one level of complexity to the next.   

3.1 LEVEL 1 – PATTERNS 

 

 

Although the equations of Chapter 2 showed 

that biology relies on relationships of structure 

to function to define its complexity, much can 

be learned from the way biology orders its parts 

with ratios.  Level 1 patterns, for example, show 

considerable promise for building large scale 

diagnostic and predictive systems for 

healthcare, for identifying phenotypic 

responses to genetic events, and for upgrading 

the reliability of experimental methods.   

Since we already know from molecular biology 

that animal species display remarkably similar 

genomes, it follows that we can expect to find 

similar phenotypic patterns within and across 

species.  Keep in mind, however, that such 

patterns can change throughout life as they 

adapt to a wide range of internal and external 

influences.  Although we still don’t know 

enough to interpret many of the changes that 

appear, the patterns nonetheless generate 

more than enough clues to suggest where we 

might want to go next. 

 

3.1.1 RATIOS 

Recall that the simplest unit of biological 

complexity consists of two named parts (a, b) 

and one connection (x:y) – the data pair (ax:by).  
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We define it herein as a numerical ratio derived 

from the values of two parts.   

Expressing published data as ratios solves two 

pivotal problems.  It creates a uniform and 

universal sets of searchable patterns, while at 

the same time it removes reference system 

instabilities that weaken morphological and 

biochemical data.  For example, dividing one 

concentration (y) by another (x) eliminates the 

offending reference volumes (vref) by simply 

cancelling them out.   The result is a 

dimensionless ratio:  

Concentration y/Concentration x = 

(4y  𝑣𝑟𝑒𝑓 𝑖⁄ ) 

(2x/𝑣𝑟𝑒𝑓 𝑖)
=

4y

2x
=

2y

1x
= 1x: 2y,  (3.1) 

where 𝑣𝑟𝑒𝑓 𝑖 = 𝑣𝑟𝑒𝑓 𝑖  . 

The biology literature stores vast amounts of 

concentration data.  Stereological estimates, for 

example, generate volume (v/v), surface (s/v), 

length (l/v), and numerical (n/v) densities – all 

of which exist as concentrations with potentially 

unstable reference volumes.  Similarly, 

biochemical data expressed as concentrations 

(an activity or amount of a constituent per mg 

protein or g of tissue) can display similar 

instabilities (e.g., Figure 6.6).   

By plotting one set of parts against those of 

another, it quickly becomes apparent that ratios 

serve as the backbone of biological complexity.  

Such sets, which include data pair libraries, 

compare controls to controls and controls to 

experimentals.  By retaining data pairs that 

produce regression lines with R2 close to one 

(e.g., 0.999), we discover that similar and 

different parts coming from a wide range of 

species can share the same regression equation.  

Figure 3.1, for example, shows that the 

relationship of the endoplasmic reticulum to 

other cytoplasmic organelles can display a high 

degree of order, as indicated by an R2 = 0.99.         

 

Figure 3.1 A high degree of order can be found in the 

relationship of the endoplasmic reticulum to other cell 

organelles (From Bolender, 2004).   

Moreover, selecting data pairs with regression 

lines becomes an effective strategy for 

extracting patterns from clumps of data points.  

Figure 3.2, for example, detects unsuspected 

relationships between mitochondrial and Golgi 

membranes. 

      

Figure 3.2 A repertoire plot shows the relationship of 
mitochondria to Golgi.  Top: Typically, such comparisons 
display data clumps with weak correlations.  Bottom: 
When fitted to repertoire equations by removing outliers 
(defined here as points not on or close to the line), the data 
clumps unfold into a set of parallel lines with R2s close to 
1.0 (From Bolender, 2004). 
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One of these figures, however, tells a 

particularly interesting story.  When we plot 

mitochondria against other cell organelles and 

fit them to a regression line, the data pairs 

selected thereby produce a histogram with 

discernable steps (Figure 3.3).   

 

Figure 3.3 When a ladder equation plots the mitochondrion 
against other organelles and is fitted to a regression with 
an R2 = 0.99, the corresponding histogram of the data pairs 
display distinct steps (From Bolender, 2004). 

 

3.1.2 DECIMAL RATIOS 

The histogram of Figure 3.3 suggests that the 

relationship of one part to another describes a 

digital (noncontinuous) rather than an analogue 

(continuous) distribution.  In effect, Figure 3.3 

provides an important clue.  If we use the 

permutation equation (2.2) to expand the parts 

data stored in the stereology literature 

database and then assign the resulting ratios to 

discrete decimal bins (ranging from 0.0001 to 

100,000; see Figure 7.13), published data 

become optimized for finding quantitative 

patterns.     

By expanding (taking permutations) and 

standardizing published data (forming data 

strings), we end up with a working model for a 

Universal Biology Database, one designed 

specifically to ferret out quantitative patterns in 

the biology literature.  This switch from 

analogue to digital triggers a new strategy, one 

that consists of assembling new databases from 

the biology literature designed to address 

specific problems.  Such a strategy continues to 

be highly effective in identifying and resolving a 

wide range of complex issues.           

The first task of the new universal database was 

to convert an undisciplined collection of 

decimal ratios into a biological blueprint, one 

that could provide clues to the way biology 

organizes its parts. 

Figure 3.4 shows the data entry screens used to 

populate the blueprint database and Figure 3.5 

illustrates a typical search using a query by 

example (QBE) interface.  In short, the blueprint 

database plays a key exploratory role in that it 

provides empirical evidence for the existence of 

inter- and infraspecific similarities across a wide 

range biological parts and phenotypes.  Such a 

finding dovetails with numerous reports in the 

literature of molecular biology that describe 

extensive sharing of genes across species 

(Alberts et al., 2014; Lodish et al., 2016). 
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Figure 3.4 Top: Data entry consists of recording all the 

connections (as ratios) associated with a given pair of 

parts.  Bottom: The blueprint database documents the 

distribution of data pairs, ratios, valences, and frequencies 

(From Bolender, 2006).   

 

 

 

Figure 3.5 Top: The SQL query selects the x:y ratio of 1:2.  

Middle: Clicking on the Query Button sends the request to 

the database, which returns the information requested; 77 

examples of 1:2 rations were found.  Bottom: Individual 

data pairs are listed along with the extent of their 

reproducibility (the number of duplicates) in the database.  

The SQL script shown at the bottom of the screen includes 

directions the database uses to find the 77 examples of 1:2 

ratios (From Bolender, 2006).   

 

3.1.3 UNIVERSAL BIOLOGY DATABASE 

A key advantage of having a stereology 

literature database is that we can use it to 

generate new databases specific to a given 

problem – quickly and easily.  A universal 

biology database translates the original parts 

data of the literature into decimal ratios and 

mathematical markers.  These dimensionless 

ratios help to resolve the long-standing 

reference system problems (see concentration 

trap; Figures 7.2, 7.3, and 7.4) by converting 

both concentrations and absolute values into a 

standardized set of alphanumeric strings.  This 

proves to be helpful.  Instead of having to deal 

with data scattered across thousands of papers, 

research data are now sitting side by side in the 

same place and in the same format.  Given such 

an arrangement, they can work together. 

When expressed as decimal ratios, this new 

data type also fits comfortably with the view 

that complex adaptive systems evolve toward 
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the edge of chaos, a transitional zone between 

order and chaos where complexity is maximal.  

Data collected from the biology literature 

display a high degree of exactness (order) 

inconsistent with the load of methodological 

bias they habitually carry.  By assigning such 

data to decimal bins, the exactness of the 

published data becomes slightly less exact, 

thereby moving them toward or onto the edge 

of chaos.  At this edge, patterns flourish, and 

emergent properties appear (Walthrop, 1992, 

Kauffman, 1995).             

An obvious application of the universal 

database is to explore the consequences of 

genetically modifying organisms.  With new 

directions in molecular biology being forged 

with CRIPSR and imRNA, where are we headed?  

Will the root changes we are introducing into 

biology’s complexity become analogous to the 

triggering butterfly effect of chaos theory? 

A hint as to the implication of genetically 

engineering organisms, for example, comes 

from a study of cell ratios in the lateral 

geniculate nucleus of 58 isogenic strains of mice 

(Seecharan et al., 2003; Bolender, 2005).  

Plotting data pairs derived from the original 

data set (cell counts) produced a cloud of poorly 

correlated data points (R2 = 0.03).  However, the 

data pairs of the cloud unfold into 14 equations 

displaying R2s greater than 0.9.  These results – 

shown in Figure 7.7 - tell us that 58 isogenic 

strains of mice have at least 14 unique ways to 

build a lateral geniculate nucleus – starting with 

three cell types.  Such unexpected results 

suggest that the butterfly’s wings have already 

started to beat.   

 

3.1.4 DATA TRIPLETS 

At this point, we’re ready to scale up the 

information content of the original stereology 

literature database by increasing the number of 

variables in the data ratio from two (ax:by) to 

three (ax:by:cz).   

Consider three named parts, a, b, and c with 

values x, y, and z.  Three parts taken two at a 

time gives six data pairs: a:b, a:c, b:a, b:c, c:a, 

and c:b.  When combined with their ratios, we 

get six mathematical markers - ax:by:cz, 

ax:cz:by, by:ax:cz, by:cz:ax, cz:ax:by, and 

cz:by:ax – identified herein as triplets. 

Figure 3.6 shows how generating all possible 

data ratios has a strong multiplier effect.  Five 

original points taken two at a time give 20 data 

pairs, 10 points give 90, and 25 points give 600.  

Taking n parts 3 at a time to form data triplets 

takes it up a notch: 5 points now give 60 

triplets, 10 give 720, and 25 give 13,800.   

Quadruplets, however, can quickly push the 

numbers well beyond the ability of the current 

technology to manage them.  An Excel 

(Microsoft, Redmond, WA) spreadsheet, for 

example, accepts only about 1.2 million rows of 

data. 

 

Figure 3.6 A data set can be expanded by taking all 

possible permutations taken two at a time (Data Pairs), 

three at a time (Triplets), and four at a time (Quadruplets).  

The plot illustrates what happens to the data coming from 

a single paper. Although roughly 46,000 data pairs and 

850,000 data triplets were used to populate the universal 

databases, the number of quadruplet markers exceeded 

15,000,000 (From Bolender, 2016a). 

3.1.5 ORGANISM CODES 

Although we can translate our published data 

into patterns with triplet ratios, how do these 
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patterns fit into biology’s scheme?  In fact, the 

fit seems to be remarkably good.  For example, 

we can use organism codes to represent the 

parts of a cell either as a 1D string or a 2D 

network of ratios.  In Figure 3.7, the organelles 

of the gastric parietal cell form a 2D network of 

interconnections.  This arrangement of parts – 

expressed as ratios – identifies the rules biology 

is using to define a normal, resting parietal cell.  

By translating biology’s rules of design into 

visual patterns, we see how complexity is being 

expressed.   

 

Figure 3.7 Organelles of the parietal cell in the human 
stomach display multiple connections.  Moreover, the 
connections can be combined to form a string of ratios 
(lower panel), which reflects the biological rule (code) for 
constructing parietal cells - nuc(1) :  cyma(10) : mito(10) : 
mivi(2) : mvb(0.4) : db(1) : calu(1) (Original data adapted 
from Aase et al., 1976; From Bolender, 2010). 

Do biology’s rules change?  Yes.  Can we 

influence such changes?  Yes, again.  Figure 3.8 

illustrates the patterns displayed by the human 

hippocampus in health (top), alcoholism 

(middle), and Alzheimer’s disease (bottom).  

Notice that both the ratios and the connections 

can change.  In Alzheimer’s disease, multiple 

parts of the hippocampus have lost their ability 

to network with all the other parts except for 

the presubiculum.  In effect, the brain shuts 

down communication by dropping connections 

based on ratios.  The normal recipe disappears.    

What clue jumps out from Figure 3.8?  

Alzheimer’s disease changes the parts and 

connections of the brain quantitively.  The clue 

suggests that such changes might be diagnostic 

for this disorder, or even for disorders in 

general.  If we take the bait and follow the clue, 

what happens?  We end up with a new 

diagnostic test for disorders of the brain (Figure 

3.23).    

 

 

 

Figure 3.8 Organism codes - based on triplets - characterize 
the hippocampus in health (control: top) and disease 
(alcohol: middle, Alzheimer: bottom).  Notice how the 
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triplets can detect changes in the complexity of the 
hippocampus, using the relationship of parts to 
connections (Original data adapted from Harding et al., 
1997; From Bolender, 2010). 

Figures 3.7 and 3.8 suggest the presence of a 

pecking order in biology, wherein one of the  

parts controls more connections than another.  

For example, in Figure 3.8 the dominance shifts 

from the dentate gyrus in the control to the 

presubiculum in alcoholism and Alzheimer’s 

disease.  By summarizing the contents of the 

organism code database (Figure 3.9), we can 

rank the dominant central organizers.  As one 

might expect, the parts containing DNA (nuclei 

and mitochondria) exert the greatest control.  

However, the competition between the two 

controlling DNAs for resources adds another 

level of complexity when trying to diagnosis or 

predict changes in cell compartments 

(Bolender, 2017). 

Figure 3.9 The dominant central organizers receiving the 

largest number of connections include the nucleus and 

mitochondrion.  The tendency of cell organelles to key on 

specific parts may point to a first principle of cell design 

(From Bolender, 2010).  

 

3.1.6 PARALLEL COMPLEXITIES 

A parallel complexity is defined as a collection 

of decimal ratios, which when expressed as 

alphanumeric strings, serve as a proxy for 

biology.   

The parallel complexities currently being 

described at level 1 derive from databases 

containing morphological data.  Since such 

databases come from two distinct sources 

(living and nonliving subjects), we can expect 

the two data sets to carry different 

methodological biases.   

Such differences, however, can act to our 

advantage.  MRI data collected from living 

patients tend to minimize methodological 

biases, whereas stereological data collected 

postmortem carry a much heavier load thereof.  

Understandably, part of the challenge in 

applying stereology to biology includes figuring 

out how to minimize the negative effects of 

such biases.  MRI can help (Figure 3.19; Top).   

 

3.1.7 MATHEMATICAL MAPPING 

Mathematical mapping consists of associating 

an element of one set with that of another, 

both of which share a common value.  It serves 

as a quantitative measure of connectivity.  

Moreover, by depicting the relationship of parts 

to connections visually, we can begin to 

appreciate the extent and strategy of biological 

complexity. 

We begin with the MRI data (volumes) collected 

from the brains of patients (Goldstein et al., 

1999).  Figure 3.10 represents a mathematical 

map of the cerebral cortex (control subjects), 

wherein 42 parts (blue dots) display a bewilder-

ing number of interconnections (red lines).  The 

figure shows how biology can use it parts and 

connections to design the brain according to a 

set of well-defined rules.  By mapping all 42 

parts simultaneously, we begin with a global 

view of the human cerebral cortex as a com-

plexity, which, in turn, can be unfolded to re-

veal local patterns and unsuspected relation-

ships.  
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Figure 3.10 A mathematical map of the normal human 

cerebral cortex derives from forty-two parts displaying 

thousands of connections (Original data adapted from 

Goldstein et al., 1999; From Bolender, 2011).   

 

3.1.8 DIAGNOSTIC PATTERNS 

When we compare, for example, the frontal 

pole in normal individuals to those with 

schizophrenia, distinctly different patterns 

appear (Figure 3.11).  In the original study, 

however, no such patterns were reported 

(Goldstein, et al., 1999).  Notice that 

schizophrenia produces dramatic changes in the 

connectivity of the parts throughout the brain 

(Figures 3.11, 3.12).  In such cases, the maps 

become diagnostic of the disorder.    

Normal Patients 

 

 

Patients with Schizophrenia 

 

Figure 3.11 In schizophrenia, the relationship of parts to 
connections in the human frontal pole changes (Original 
data adapted from Goldstein et al., 1999; adapted from 
Bolender, 2011).  Blue (at top of field) = frontal pole, yellow 
= medial paralimbic cortex; red = occipital lateral gyrus 

Although complex patterns lend themselves to 

a graphical analysis, mathematical maps can 

also be condensed into equations.  In Figure 

3.12, for example, the equation for 

schizophrenia (dashed red line) derived from 

the cerebral cortex fits a polynomial equation (y 

= 0.0485x2 - 4.3726x + 98.06 with an R2 of 

0.9854.  Notice that it is readily distinguishable 

from the corresponding control curve (y = 

0.0315x2 - 3.4193x + 87.57; R² = 0.9815).      

  

Figure 3.12 Diseases such as schizophrenia can be 
expressed as a polynomial equation (dashed red line), 
which can be distinguished from the one of normal 
patients (solid blue line) (Original data adapted from 
Goldstein et al., 1999; From Bolender, 2011). 
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3.1.9 GENERALIZING DISORDERS 

The human brain displays a remarkable capacity 

for creating disorders.  But what if these 

disorders are related and share many of the 

same roots and branches analogous to the 

familiar schemes of evolutionary trees?  If, in 

fact, disorders are modular in design, then 

modular approaches to diagnosis and treatment 

might prove to be an effective clinical strategy. 

Although a disorder of the human brain carries 

a distinctive set of mathematical markers, the 

same markers can appear in more than one 

disorder.  This tell us that the complexity of a 

disease depends on multiple factors, including 

the composition of individual markers, the 

presence or absence of certain markers, and the 

total number of abnormal markers in play.  In 

effect, we can use mathematical markers to 

characterize each disorder as a unique 

phenotype.  This replicates phenotypically the 

approach currently being applied to genes.   

Figure 3.13 includes a list of brain parts cross-

correlated with disorders; it summaries the 

design strategy biology uses to create disorders.  

Notice that specific parts define a disorder, that 

different disorders often involve the same 

parts, and that relatively few parts (35/185 = 

19%) account for most of the disorders.  

Schizophrenia with 26 changed parts and 

bipolar disorder with 20 produced the most 

damage with some parts being more vulnerable 

than others.  The amygdala was involved in 13 

disorders, caudate 13, hippocampus 10, 

putamen 10, and thalamus 9.  [Note: Later in 

the chapter (Figures 3.31 and 3.32), a database 

based on counts of duplicate mathematical 

markers will put the hippocampus in first place.]    

 

Figure 3.13 The figure summarizes the contribution of 
specific parts to 21 disorders of the human brain 
(summarized from 76 publications).  Read the blue squares 
by row to identify the involvement of a given part in a 
disorder and the blue squares by column to identify the 
parts responsible for a given disorder. These parallel 
complexity data came from a diagnosis database 
consisting of triplets (Original data adapted from Kennedy, 
et al., 2012; From Bolender, 2012).  

 

3.1.10 CREATING DISORDERS WITH 

MODULES 

Figure 3-13 identifies disorders of the brain 

according to the parts involved.  Once again, 

the patterns suggest that biology assembles 

things – new and old - from well-defined sets of 

parts – or modules - be they normal or 

abnormal.     

By graphing 14 of the disorders listed in Figure 

3.13, we can begin to see some of the details of 

this modular strategy.  Schizophrenia, for 

example, represents the most extensive 

departure from the normal in that it carries at 

least 123 abnormal mathematical markers.  By 
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adding the markers of 14 other disorders to the 

graph, we can see the relationship of 

schizophrenia to these disorders.  Although 

schizophrenia remains the dominant player, it 

shares many of its parts (30%) with the other 

disorders (Figure 3.14).   

 

Figure 3.14 Disorders of the brain share many similar parts 
and connections configured as mathematical markers 
(Original data adapted from Kennedy et al., 2012; From 
Bolender, 2012).  Enlarge the image to view details.  [The 
figure is also available online.] 

Notice in Figure 3.14 that the abnormal parts 

and connections of six disorders (Asperger’s, 

borderline personality, OCD, PTSD, 

velocardiofacial, and William’s) are the same as 

those found in schizophrenia.  What could this 

mean?  If the equivalent of a genetic script (or 

cohort) exists for schizophrenia, is it being read 

only in part to produce one of these six 

disorders or is schizophrenia a combination of 

many different disorders?  What role might post 

translational processing be playing?  These 

questions, of course, go to the heart of the 

disease process.  The take away point here is 

that we can characterize these disorders 

objectively as quantitative patterns.  Artificial 

intelligence (AI), for example, might find deeper 

patterns currently overlooked.     

If we plot just three disorders (schizophrenia, 

bipolar disorder, and ADHD), the complex 

relationship of one disorder to another 

becomes easier to see (Figure 3.15).  Notice 

that bipolar disorder and ADHD exist as distinct 

subsets of schizophrenia in that they share 80% 

of the same parts and connections.  Likewise, a 

secondary relationship exists between the 

bipolar disorder and ADHD by sharing roughly 

25% of the same parts and connections.  

 

Figure 3.15 ADHD and bipolar disorder share many 
identical parts and connections (mathematical markers) 
with schizophrenia, as well as with each other (Original 
data adapted from Kennedy et al., 2012; From Bolender, 
2012).  Enlarge as needed. 

Given what we have learned thus far, studying 

individual disorders within the context of all the 

disorders may turn out to be a more effective 

way of advancing our understanding.  If, for 

example, we can induce an abnormal marker to 

revert to a normal one, then that solution might 

also apply to several other disorders.  Mapping 

disorders with mathematical markers shows us 

where to look.  What, for example, is the 

relationship between mathematical markers 

and clinical symptoms (emergent properties)?   

 

3.1.11 PATTERNS AND PROBLEM SOLVING 

Now that we can extract patterns from the 

biology literature, how do we go about using 

them to deliver solutions to problems of 

general interest?  One way of answering the 

question is to identify problems that have 

stubbornly resisted solutions and then show 

how we can use patterns to find workable 

solutions.  

How, for example, might we approach the 

problem of diagnosing disorders of the brain?  

The current approach, which relies on the 

analysis of subjective symptoms, suffers the 
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limitation of having to deal with disorders 

displaying many overlapping symptoms 

(Bolender, 2015).  Let’s try a fundamental shift 

in strategy.  For our purposes here, this will 

include shifting the focus of a clinical diagnosis 

from subjective symptoms to objective 

measures.       

Such a strategy, however, invariably leads to 

questions of a practical nature.  Which 

database, for example, should we use - the MRI 

or the stereology?  To be on the safe side, we’ll 

try both.     

This means that the problem we want to solve 

is one that involves collecting diagnostic data 

from two analogous but potentially dissimilar 

sources - living and postmortem brains.  We 

want to answer two questions.  Do both data 

sets yield the same results?  If not, why not?  In 

turn, the answers to these questions will serve 

to guide us toward meeting our larger goal of 

identifying objective diagnostic tests with 

improved reliability.    

 

3.1.12 DIAGNOSING SCHIZOPHRENIA 

Since we have access to data coming from the 

same parts in living (Internet Brain Volume 

Database [IBVD]) and postmortem brains 

(Stereology Literature Database [SLD]), we can 

generate two diagnostic databases from the 

literature, both of which consist of triplet 

mathematical markers (ax:by:cz).  

If we mix the mathematical markers coming 

from the two databases (MRI with 24 disorders 

and stereology with just schizophrenia), select 

the resulting duplicates (MRI = stereology), and 

plot them (Figure 3.16), the stereology markers 

should detect schizophrenia.  Did they?  No.  

What happened? 

Figure 3.16 shows that the stereology markers 

missed the correct diagnosis by picking the 

bipolar disorder, instead of the correct one 

(schizophrenia), which displayed a distant 

fourth-place finish.  Such a result tells us that 

many of the parts in living and postmortem 

brains may share the same names but not 

necessarily the same volumes and ratios.     

Figure 3.16 When mathematical markers for schizophrenia 

were taken from postmortem brains (stereology) and run 

against a panel of 24 disorders derived from living brains 

(MRI), the resulting duplicates led to an incorrect diagnosis 

(bipolar).  The correct diagnosis – schizophrenia – ended up 

in fourth place.  Such a result suggests that mathematical 

markers derived from living and non-living brains can be 

incompatible quantitatively.  Notice that relatively few 

markers were in play (Original data adapted from Kennedy 

et al., 2012; From Bolender, 2013).   

Why is such a finding, as shown in Figure 3.16, 

such a troubling result?  Since stereological 

methods contribute to numerous studies of the 

brain, data based on potentially faulty 

reference volumes may be corrupting results, as 

well as hindering our efforts to reproduce 

experimental outcomes.   

Is there a fix for this problem?  Fortunately, yes.  

If we identify MRI data coming from living 

patients as the gold standard, then postmortem 

distortions can be corrected thereto (Bolender, 

2013).   
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Although shrinkage corrections have been 

applied to the entire human brain, corrections 

at the level of individual brain parts have 

received little or no attention.  We can mitigate 

this shortfall by introducing correction factors 

for a wide range of stereological estimates, as 

shown in Figure 3.17. 

This figure uses volume data taken from the 

MRI and stereology databases to calculate 

ratios that identify the amount of swelling or 

shrinkage accompanying individual parts of the 

brain.  Although the average shrinkage (11%) is 

consistent with an expected value of 10-15%, 

individual values paint a disturbing picture with 

volume distortions approaching 90%.  As shown 

in Figure 3.17, the methodological biases 

include the swelling (>1) and shrinking (<1) of 

the named parts. 

 

Figure 3.17 Volume correction factors for specific parts of 
the postmortem human brain show a wide range of values. 
A correction factor equal to 1 indicates no change, >1 
shrinkage, and <1 swelling. The blue column identifies the 
brain, which needs a correction factor of 1.11 to account 
for shrinkage of about 11% (Original data adapted from 
Kennedy et al., 2012; From Bolender, 2013). 

Armed with corrections for the volume 

distortions of individual parts (Figure 3.18), we 

can apply them to the stereological data used in 

our earlier attempt to diagnose schizophrenia 

with postmortem data (Figure 3.19).    

 

Figure 3.18 Volume corrections for the parts of the 
postmortem brains with schizophrenia exhibit a wide range 
of values (Original data adapted from Kennedy et al., 2012; 
From Bolender, 2013).  They are used to correct the post 
mortem estimates to the MRI values, which serve as gold 
standards. 

With the corrections applied (Figure 3.18), we 

can use the previously ineffective stereological 

data (Figure 3.16) to diagnose schizophrenia 

correctly (Figure 3.19; Top).  Now, both data 

sets (living and postmortem) give the same 

diagnostic result.    

 

Figure 3.19 (Top) 
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Figure 3.19 With correction factors applied to the distorted 
volumes, the stereological data deliver the correct 
diagnosis - schizophrenia.  This puts the postmortem data 
of the brain back in play.  Top: corrected stereological 
data; Bottom: MRI data (Original data adapted from 
Kennedy et al., 2012; From Bolender, 2013). 

 

3.1.13 DIAGNOSING DISORDERS OF THE 

BRAIN 

Trying to diagnose a disorder of the brain 

objectively - without knowing the diagnosis 

beforehand – can require a lot of work only to 

deliver an inconclusive result (Bolender, 2014).  

However, going from a known to an unknown 

becomes a better way to proceed because it’s 

easier to spot and work around the many 

pitfalls hidden in such an undertaking.  In 

practice, building a “bullet-proof” diagnostic 

database first, before testing it against 

unknown disorders, produces a far more 

satisfying result.          

If we start with triplet markers (ax:by:cz) 

generated from 27 disorders, we can produce 

277,039 mathematical markers from the data of 

117 MRI papers stored in the IBVD.  

Alternatively, using quadruplet mathematical 

markers (ax:by:cz:dq) from 22 disorders, we can 

get 3,651,770 markers from 75 papers (IBVD).  

Both diagnostic databases (triplet and 

quadruplet) can be designed to always deliver 

the correct diagnosis (Figures 3.20 and 3.21).  

Notice that both the number of papers (1-35) 

and mathematical markers (63 to 114,878) vary 

widely across the disorders. 

 

Figure 3.20 When filtered to remove duplicates, a triplet 
database consisting of unique markers can diagnose a 
disorder – selected from a diagnosis database - correctly 
100% of the time (Original data adapted from Kennedy et 
al., 2012; From Bolender, 2014). 
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Figure 3.21 When filtered to remove duplicates, a 
quadruplet database consisting of unique markers can 
diagnose a disorder – selected from the diagnosis database 
- correctly 100% of the time (Original data adapted from 
Kennedy et al., 2012; From Bolender, 2014). 

Producing the results shown in Figures 3.20 and 

3.21 proved to be a challenging task because 

the diagnostic process was continually being 

compromised by false positives and false 

negatives.  The solution to this problem 

consisted of sequestering the diagnostic data in 

a data cage (Figure 3.22), wherein each disorder 

has its own set of unique mathematical 

markers.  This guaranteed a correct diagnosis 

100% of the time.     

 

3.1.14 DIAGNOSING WITH A DATA CAGE 

By encapsulating the diagnostic data in a cage 

(Figure 3.22), thousands to millions of unique 

mathematical markers can be vetted and shown 

to be reliable 100% of the time.  The next step 

of the diagnostic process consists of 

constructing a visual interface that diagnoses a 

disorder by binding the markers of an unknown 

disorder to those of known markers.   

 

Figure 3.22 A data cage designed for the human brain 
includes a collection of 26 disorders – each of which is 
identified in the figure as a central point surrounded by 
points representing mathematical markers unique to that 
disorder (Original data adapted from Kennedy et al., 2012; 
From Bolender, 2014).  

To show how the data cage works as a 

diagnostic tool, twenty markers of one disorder 

(bipolar) were copied, renamed as unknowns, 

added back to the cage, and plotted a second 

time (Figure 3.23).  The diagnostic plot shows 

that all the “unknowns” attached to a single 

disorder – the one from which they originally 

came (bipolar).  In principle, the data cage 

serves as a known standard to which unknown 

disorders can be compared.  In effect, it 

becomes a simple, straightforward test.  
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Figure 3.23 When an unknown disorder characterized by 
20 mathematical markers is run against the entire set of 26 
known markers, the unknowns (marked by an arrow) bind 
to the disorder sharing the same markers.  The unknown 
markers were diagnosed correctly as belonging to patients 
having bipolar disorder.  For purposes of illustration, the 
example was limited to 50,000 markers – out of 245,000 
(Original data adapted from Kennedy et al., 2012; From 
Bolender, 2014). 

Why was this objective approach to diagnosis 

successful?  The current approach to diagnosing 

disorders of the brain requires advanced levels 

of clinical expertise confirmed by rigorous 

vetting.  Mathematical markers captured and 

leveraged the clinical expertise contained within 

172 publications, while, at the same time, 

collected many of the rules responsible for the 

disorders.  The data cage proved to be 

successful as a diagnostic tool because it was 

based on unique identifiers (mathematical 

markers) that eliminated false positives and 

false negatives.  By increasing the number of 

disorders and markers stored in the data cage 

database, we can expect it to work as a 

diagnostic tool with increasingly effectiveness in 

the general population.   

A point worth noting is that data cages are likely 

to accommodate a wide range of diagnostic 

problems in clinical medicine.  Since a diagnosis 

represents an exercise in recognizing and 

interpreting patterns, an objective approach 

has the advantage of putting millions of 

patterns in play, all of which also carry 

predictive properties.  In effect, patient data – 

expressed as a complexity - come with built-in 

feedback loops, extending from the past, to the 

present and into the future.  One can imagine a 

yearly checkup that begins with a head scan 

that characterizes one’s current health and 

predicts probability-based outcomes 

accompanied by recommendations. 

Note that mathematical markers with their 

ability to form universal biology databases 

would seem to be natural candidates for 

training and improving the effectiveness of 

deep and machine learning, both of which are 

key components of artificial intelligence (AI). 

 

3.1.15 EXPLORING THE DISEASE PROCESS 

Diagnosis, prediction, and unravelling the 

disease process all qualify as big data problems 

because of their complexity.  Once populated 

with published data, however, these large 

clinical databases create new opportunities for 

discovery. 

When translated into mathematical markers, 

for example, a diagnostic database derived from 

the IBVD can be used to explore patterns basic 

to the disease process.  If, for example, a 

disorder is a function of a set of abnormal, but 

modular patterns, then a solution at the 

modular level for one disorder might apply to 

other disorders carrying similar modules.  Since 

biological systems continually adapt and 

optimize within a rule-based framework, trying 

out new variations on a general theme may be 

biology’s way of looking for new possibilities – 

new ways to adapt.  When it goes too far, 

however, unintended consequences may occur. 
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3.1.16 UNFOLDING A DISORDERED BRAIN 

OBJECTIVELY 

For our purposes here, we will define a 

disordered brain as one containing 21 disorders 

- each characterized by a set of mathematical 

markers.  Figure 3.24 identifies the disorders 

used for the unfolding.   

 

 

Figure 3.24 Top: A database of shared (duplicate) 
mathematical markers becomes a parallel complexity 
representing twenty-one disorders of the human brain 
(Original data adapted from Kennedy et al., 2012; From 
Bolender, 2015).  Bottom: An example taken from the 
disordered brain database shows that the same 
mathematical marker can be shared by multiple disorders 
coming from different publications (cit_nu).  

 

3.1.16.1 First Step 

When applied to the disordered brain database, 

which contains disorders that can share 

mathematical markers (Figure 3.24), the 

CommunityGraphPlot (Mathematica, Wolfram 

Research, Inc.) locates five distinct clusters 

(Figure 3.25), four of which contain more than 

one disorder.  The patterns displayed by the 

dark blue lines (connectivity) and the dots 

(mathematical markers and disorders) suggest 

that the subpopulations of the 21 disorders are 

inherently related because they share many of 

the same abnormal mathematical markers. 

 

 

Figure 3.25 First Step: Shared mathematical markers 
(modules) from the aggregated abnormal brain (Figure 
3.24) distribute – as communities - into five distinct 
clusters.  Note that a dot can represent a disorder or a 
mathematical marker (which may or may not be a 
duplicate), whereas the dark blue lines represent 
connections (Original data adapted from Kennedy et al., 
2012; From Bolender, 2015). 

 

3.1.16.2 Second Step 

The complexity of each cluster identified in 

Figure 3.25 unfolds to reveal the next grouping 

of complexity (Figure 3.26).  Now the individual 

clusters labeled 1, 2, 4, and 5 in the First Step 

display clusters of their own.  Cluster 3 – shown 

in Figure 3.25 - is the exception.  It contains a 

single disorder (Alzheimer’s disease).     
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Figure 3.26 Second Step: The CommunityGraphPlots 
illustrate the sharing of markers between disorders.  Each 
cluster is characterized by the disorder(s) it contains 
(Original data adapted from Kennedy et al., 2012; From 
Bolender, 2015).  

 

3.1.16.3 Third Step 

If a given cluster in Figure 3.26 carries more 

than two disorders, it is unfolded until it 

contains only two (Figures 3.27 and 3.28).     
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Figure 3.27 Third Step: Clusters containing more than two 
disorders in the Second Step are unfolded into clusters 
containing just two disorders.  In such clusters, the shared 
markers appear as an intermediate, spindle shaped 
structure; see cluster 2.11 in Figures 3.26 and 3.30 
(Original data adapted from Kennedy et al., 2012; From 
Bolender, 2015).  

 

3.1.16.4 Forth Step 

Cluster 5.1.1, for example, unfolds into three 

pairs of clusters (Figure 3.28).     

 

 

 

Figure 3.28 Forth Step: Cluster 5.1.1 is resolved into three 
clusters relating autism to Huntington disease, alcohol, 
and preterm (Original data adapted from Kennedy et al., 
2012; From Bolender, 2015). 

Figure 3.29 summarizes the disorders found in 

the five clusters identified in the First Step 

(Figure 3.25).  Each cluster detects disorders 

most closely related – as defined by the sharing 

of mathematical markers.  Keep in mind, 

however, that this summary reflects the 

contents of the current disordered brain 

database, which can be expected to change as 

more data are added (Recall Figure 3.20).          

 

Figure 3.29 The graph shows the relationship of clusters to 
disorders in the aggregated human brain, based on their 
shared mathematical markers (From Bolender, 2015).   
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3.1.17 SHARING MARKERS 

When reduced to a final cluster pair, we can 

identify the mathematical markers being shared 

by the paired disorders.  Figure 3.30 details the 

relationship of ADHD to OCD by replacing the 

dots of Figure 3.27 with the alphanumeric 

strings of the mathematical markers.  The 

overlap is striking in that the OCD cluster shares 

more than half (58%) of its markers with those 

of the ADHD cluster.  Given such an extensive 

sharing of markers among disorders (Figure 

3.25), it appears likely that substantial portions 

of many disorders are likely to map back to 

similar destinations in the genome or to 

somewhere else.  If this turns out to be the 

case, identifying, targeting, and alleviating the 

most damaging disruptions may prove to be an 

effective strategy for managing groups of 

related disorders.               

 

Figure 3.30 The clusters formed by ADHD and OCD show 
extensive sharing of mathematical markers (Original data 
adapted from Kennedy et al., 2012; From Bolender, 2015).    

3.1.18 KEY PLAYERS PRODUCING DISORDERS 

CommunityGraphPlots are useful in that they 

identify the preferences shown by disorders for 

specific markers, parts, and connections.  Figure 

3.31, based on a derivative of the IBVD (one of 

the disorders databases), shows that the 

hippocampus is the part of the brain most often 

involved in the disease process.     

 

 

Figure 3.31 Duplicates >11.  The hippocampus is the part of 
the brain contributing most often in the disease process 
(Original data adapted from Kennedy et al., 2012; From 
Bolender, 2015).   

   

Figure 3.32 summarizes the relationship of parts 

to disorders according to the frequency of 

duplicate mathematical markers (>11 to >5).  
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Note that the Access database (Microsoft) was 

used to count the number of duplicate 

mathematical markers by applying filters.  

[Refer to the original report for details and 

worked examples (Bolender 2015)].         

Figure 3.32 The figure identifies the relationship of brain 

parts to disorders arranged left to right according to the 

descending numbers of duplicate mathematical markers 

(>11 to >5).  These results suggest that a surprisingly small 

number of parts play a disproportionately large role in the 

disease process (Original data adapted from Kennedy et 

al., 2012; From Bolender, 2015).     

The figure shows that most disorders of the 

brain depend importantly on abnormalities in 

just five parts – the hippocampus, amygdala, 

putamen, caudate, and temporal lobe – given 

the data set available at the time from the IBVD.  

It also summarizes the extensive sharing of 

parts that occurs across disorders.  Taken 

together, these data continue to suggest a 

modular origin for the disorders of the brain.   
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CHAPTER 4  

REPRODUCIBILITY 
 

In recent years, a growing number of people 

and institutions have expressed concern over 

the inability of the sciences to duplicate studies 

and to demonstrate the validity of experimental 

results (Collins and Tabak, 2014; Begley and 

Ioannidis, 2015; Freedman et al., 2015; Roth 

and Cox, 2015; Engber, 2016).  Moreover, 

metanalysis has shown that publications in the 

biomedical sciences are likely to be correct only 

about 20% to 30% of the time (Ioannidis, 2005; 

Colquhoun, 2014).     

We now find ourselves deeply entrenched in 

what is being called a reproducibility crisis 

(Baker, 2016; Pellizzari et al., 2017).  Since 

everyone seems to want less biological variation 

(to get better P values), the solutions being 

recommended focus largely on methodological 

issues.   

For big problems, such as reproducibility, we 

always have two options - practical and 

theoretical.  If the practical solution fails to get 

the job done, how might we approach the 

problem theoretically?  We would have to 

derive reproducibility from first principles.              

Since precision, accuracy, and reproducibility 

are all fundamental to the standing of a science, 

their absence – real or perceived – becomes 

reason for concern.  This obviously creates a 

problem for the primer, a book professing to 

solve biology mathematically with data derived 

from the biology literature.   

A central theme of the primer contends that 

interacting with biology as a complexity 

requires an approach well-suited to the task.  It 

attributes the current shortcomings of biology 

as a science to the widespread belief that 

biology, chemistry, and physics can all operate 

successfully within the confines of a 

reductionist model.  Given the reports of 

widespread absence of precision, accuracy, and 

reproducibility in the biological sciences, at 

least some of the fault must lie with a research 

strategy that reduces biology - a complexity - to 

a catalogue of isolated parts lacking in both 

connectivity and complexity.  Since connections 

account for at least 50% of biology’s complexity, 

why do we still insist on throwing them away?     

The results presented in the primer stubbornly 

refuse to suffer a similar shortfall.  By including 

both parts and connections when reconstituting 

biology’s complexity, literature databases can 

now deliver highly reproducible patterns within 

and between species routinely.  Given such an 

approach, the reproducibility crisis seen 

elsewhere has failed to appear here.  

In this chapter, we explore reproducibility not 

as a statistical exercise, but instead as a 

byproduct of copying biology.  But why not take 

the usual approach, which consists largely of 

trying to tamp down the variation coming from 

biology?  Because such an approach is 

inconsistent with reality.  Biology actively 

promotes individual variation as a form of 

adaptability essential to its survival.  Moreover, 

biology prefers to get its reproducibility from 

well-established rules and first principles, which 

we are welcome to copy and use as our own 

measure of reproducibility.         
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4.1 LEVEL 1 – PATTERNS 

 

 

4.1.1 KNOWING WHERE TO LOOK 

Biological data fall into two general groups, 

those with high variability and those with little 

or no variability.  Isolated parts tend to exhibit 

high variability, whereas ratios and 

relationships of structure to function repeatedly 

display low variability.  Biology uses both groups 

judiciously because to do so is advantageous to 

its short- and long-term interests.   

 

4.1.2 KNOWING WHAT WE WANT TO DO 

Let’s begin with reproducibility, which 

encapsulates concepts of both precision and 

accuracy.  Two choices exist.  To repeat an 

experiment, we can duplicate a previous result, 

or we can use literature databases to look for 

repeating patterns within and across species, 

experiments, and disorders.  For the first 

choice, we might need a better statistical result 

(e.g., P ≤ 0.01 to P ≤ 0.001), but for the second 

we could collect the same patterns from many 

different settings and species.  Both satisfy the 

notion of reproducibility.  These options, 

however, are decidedly one-sided. A pattern 

based on parts and connections carries 

mathematical information with low variability, 

whereas biological parts have variability built 

into their design because such an arrangement 

supports adaptability.  The statistical approach 

seems to work against biology, whereas the one 

based on ratios works with biology.   

An example will help.  The glycogen content of 

liver hepatocytes varies throughout the day in 

response to dietary intake and metabolic 

demands.  Because of this built in variability, 

detecting a significant difference in the 

glycogen content between two different time 

points becomes understandably problematic.  It 

requires that we synchronize events, which are 

occurring in control and experimental animals 

(Co = 5, Ex = 5), to within extremely close 

tolerances (e.g., P ≤ 0.01).  This built-in 

variability often frustrates our efforts.  While 

the critics are quick to fault results with “poor” 

P values, it might make better sense to fault the 

premise of the experimental designs. 

If biology incorporates variability into the 

design of its parts for good reason (e.g., 

adaptability), what do we gain by subjecting 

these parts to what may be unrealistic 

measures of precision, accuracy, and 

reproducibility?  If an ability to demonstrate 

that significant differences exists between time 

points supersedes everything else, then the 

biology literature offers convincing evidence 

that we are failing to deliver research results 

routinely at higher levels of reliability (P ≤ 0.01 

to P ≤ 0.001).   

What’s to be done?  Change the rules.  Shift the 

definition of reproducibility from simple to 

complex.  Attach reproducibility to biology’s 

rules, not to biology’s need to allow individuals 

to respond to surrounding conditions.    

If detecting and interpreting biological changes 

are the primary goals of an experiment, then 

designing such an experiment with well-defined 

patterns and rules instead of isolated data 

points should give us what we want, namely, 

equations with R2s = 1 or ≈ 1.  Moreover, to be 

more rigorous in the interpretation of our 

results, we can use databases to challenge the 

results across the literature rather than just by 

repeating the result of a single study.  This gives 

us a far more robust and biologically friendly 

test for reproducibility.   
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4.2 REPRODUCIBILITY TESTS APPLIED 

TO THE BIOLOGY LITERATURE 

Let’s begin by testing for the presence of 

reproducibility in the biology literature.  We’ll 

do this by looking for multiple copies of the 

same mathematical markers and connection 

ratios. 

Figure 4.1 summarizes the volume, number, 

and surface area databases populated with 

mathematical markers attached to their 

connection ratios.  The IBVD generated the 

volume data (MRI), whereas the cell counts 

(i.e., number of nuclei) and surface area data 

came from the stereology literature database 

(derived from light and electron microscopy).   

Notice in Figure 4.1 that the MRI data detected 

the largest percentage of duplicate 

mathematical markers (41.6%), whereas cell 

counts (N) the least (1.1%).   At 5.7%, surface 

areas displayed an efficiency rating five times 

greater than that for the cell counts (number) – 

despite its smaller sample size.  The order of 

magnitude difference in the number of 

duplicate markers coming from the MRI and 

stereology data sets calls attention to the 

differences that seem to exist between data 

coming from living and nonliving sources. 

Data Types → Volume Number Surface 

Data Sources→ MRI LM TEM 

Mathematical Markers 374,906 108,824 21,402 

Duplicates (≥3) 155,891 1,236 1,221 

Efficiency 
(Reproducibility) 

41.6% 1.1% 5.7% 

Figure 4.1 The table summarizes the sample sizes used for 
the reproducibility tests. Abbreviations include MRI 
(magnetic resonance imaging), LM (light microscopy), and 
TEM (transmission electron microscopy); (From Bolender, 
2016a). 

For our purposes here, global counts of 

duplicates (≥3) will serve as the measure of 

reproducibility. 

4.2.1 DEFINING THE REPRODUCIBILITY TEST  

The test uses the CommunityGraphPlot of 

Mathematica to display the relationship of 

mathematical markers to their connection 

ratios (Figure 4.2).  Units of complexity - 

identified here as rosettes – characterize 

reproducibility in the literature as a set of global 

patterns, whereas a single unit serves to 

quantify the duplication of mathematical 

markers within a given rosette (the number of 

blue lines in the “petals”).  Both serve as global 

measures of reproducibility.  In each unit, the 

number of duplicate markers is equal to the 

number of lines connecting a mathematical 

marker to its connection ratio.   

For the MRI volume data, the connection ratio 

derives from three numerical values each 

representing the volume of a different part 

(𝑉𝑝𝑎𝑟𝑡1: 𝑉𝑝𝑎𝑟𝑡2: 𝑉𝑝𝑎𝑟𝑡3).  In Mathematica, the 

plots relate mathematical markers (a1b0.05c3) 

to their connection ratios (part1part0.05part3), 

as shown below in the example below: 

"a1b0.05c3" → "part1part0.05part3". 

The strength of the test depends on the number 

of connecting lines (forming blue spindles) and 

the total number of units (rosettes) in play.  The 

number of different mathematical markers 

associated with a given connection ratio is a 

measure of the preference given to that ratio by 

biology.  To pass the test, reproducibility must 

exist within and across many such units.   
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Figure 4.2 Reproducibility can be approached 
quantitatively using units of complexity that display 
specific repeating patterns.  By plotting mathematical 
markers (peripheral dots) against their connection ratios 
(central dot), we can test for the presence of 
reproducibility by counting the number of lines connecting 
the dots (3 in this case).  Moreover, the plot identifies the 
number of different mathematical markers using the same 
connection ratio (3 shown).  Since only one copy of a given 
marker is taken per paper (or experiment), 3 or more (≥3) 
connections signal the presence of reproducibility – at the 
global level (From Bolender, 2016a).  Note that the Excel 
table shows the data set that produced one “petal” of the 
rosette shown in Figure 4.3.  Each row of data came from a 
different source (paper or experiment).  

The design of the test makes it quite difficult to 

pass.  Triplet mathematical markers consisting 

of six variables must appear as duplicates in at 

least three different papers - or separate 

experiments - to qualify.  Even so, the 

databases demonstrated repeatedly that the 

biology literature meets and exceeds this 

minimum requirement routinely (see Figures 

4.3, 4.4, and 4.5).    

 

4.2.2 TESTING MRI VOLUMES 

Since biological complexity remains intact in 

living subjects, the test was applied first to MRI 

data coming from patients.  The MRI database 

used to test for reproducibility was derived 

from the IBVD.  

Consider, for example, the rosette shown in 

Figure 4.3 (taken from Figure 4.4).  Such an 

image could not appear unless biology and the 

biology literature were taking and passing the 

same test.  The rosette shows that the same 

mathematical marker exists in as many as 13 of 

the 120 papers populating the IBVD, even when 

only a small fraction of the total markers are 

used for the plot (2,500 out of 155,891).      

 

Figure 4.3 The pattern illustrates biology’s approach to 
reproducibility.  When MRI triplet data are plotted against 
a connection ratio, the mathematical markers form a 
rosette (one shown above) centered on a unique 
connection ratio.  Multiple blue lines, which make up the 
spindle-shaped “petals,” show that the same mathematical 
marker (peripheral yellow point) is being duplicated by 
multiple papers in the database (Original data adapted 
from Kennedy et al., 2012; From Bolender, 2016a). 
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Figure 4.4 illustrates the collection of rosettes 

produced by a small sample of the 

mathematical markers collected from the 

literature (IBVD), which consisted of 120 

publications.  The image shows the extent to 

which identical mathematical markers can exist 

- with a high degree of reproducibility - across 

publications and conditions.

 

Figure 4.4 The MRI volume data of patients produce a wealth of global data as indicated by the many units (rosettes) and the 
frequency of duplicates (seen as dense blue spindles) linking mathematical markers to their connection ratios.  Note that the 

figure uses just 2,500 of the 155,891 duplicate markers (≥3).  The plot shows that reproducibility plays a key role in biology 

and exists abundantly in the biology literature (Original data adapted from Kennedy et al., 2012; From Bolender, 2016a).
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Since reproducibility is the expression of 

biology’s ability to maintain the ratios of its 

parts accurately, assembling a reproducibility 

test for the literature requires little more than 

copying biology’s rules of design.  Mathematical 

markers evidence this ability by displaying 

multiple copies of the same patterns distributed 

across the literature, wherein accuracy, 

precision, and reproducibility go hand in hand.    

 

4.2.3 TESTING STEREOLOGICAL SURFACE 

AREAS 

Now let’s see what we can learn from the 

postmortem data of stereology.  When we plot 

mathematical markers against their connection 

ratios, the surface area data also pass the 

reproducibility test (Figure 4.5) – more 

convincingly than the one for cell counts 

(numbers), but less convincingly when 

compared to the MRI data (Figure 4.4).  Such a 

result makes a compelling argument for using 

data derived from living sources as our gold 

standard – based on the results presented.   
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Figure 4.5 The surface area data (derived from cell organelles) passed the reproducibility test (many rosettes with dark blue 
spindles are displayed); (From Bolender, 2016a). 
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4.2.4 TESTING THE STEREOLOGY LITERATURE 

To biology, reproducibility would seem to 

include the patterns it expects to see 

phenotypically when the same genes are 

expressed in similar or different species - under 

similar conditions.  If true, then reproducibility 

should exist throughout the biology literature.  

Let’s test this idea. 

If we plot mathematical markers for the surface 

areas of cell organelles against their citation 

numbers (displayed in boxes; Figure 4.6), we 

can generate a global view of reproducibility as 

it exists in the stereology literature database.  

Since the figure shows that duplicate 

mathematical markers exist routinely across the 

literature, we can argue that reproducibility 

exists as a property mutually shared by biology 

and the biology literature.  This is reassuring, 

even though the postmortem data of stereology 

have a decidedly lower efficiency score than the 

one accompanying the MRI data (Figure 4.1).  

Recall that postmortem data, which carry a 

heavier load of bias, tend to be noisier than 

data coming from living sources.  Bear in mind, 

however, that the stereological database 

includes a far more heterogeneous data set 

than that of the MRI database. 

     

 

Figure 4.6 When surface areas of organelles coming from a wide variety of cell types and species (frogs to humans) are 
translated into mathematical markers and related to their citation numbers (boxed), global patterns appear across the 
stereology literature.  Such patterns indicate that global reproducibility exists in published data (From Bolender, 2016a). 

 

 

4.3 REPRODUCIBILITY AS A COMPLEXITY  

By treating reproducibility as a complexity made 

up of parts and connections (Figure 4.2), it 

becomes easier to demonstrate and verify.  

Reproducibility exists as a quantitative property 

of biology, detected here as a core ratio being 
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shared by a well-defined set of mathematical 

markers within and across species.     

A reproducibility test run under complexity 

rules offers four advantages: it (1) uses both 

parts and connections, (2) can compare and 

verify the results of one study against many, (3) 

works for most data types, and (4) applies the 

same rules locally (one paper) and globally 

(many papers).   

While it seems likely that DNA codes - directly 

and indirectly - for both parts and connections, 

we don’t know if they are being controlled 

separately or together.  If biology controls them 

separately, then disorders – or for that matter 

any type of phenotypic change – is subject to at 

least two distinct levels of oversight.  Disorders 

of the brain, for example, could be explained by 

abnormal parts, abnormal connections, or some 

combination of the two.  A reproducibility test 

based on mathematical markers accounts for all 

three possibilities.  

 

4.3.1 UNFOLDING REPRODUCIBILITY 

Reproducibility behaves like a complexity when 

approached as a collection of parts, 

connections, concentration ratios, and 

mathematical markers.  If, for example, we look 

at just the connection ratios (recall Figure 4.2), 

an otherwise heterogeneous data set consisting 

of volumes, surfaces, and numbers of parts 

suddenly displays a high degree of connectivity 

(Figure 4.7).  This tells us that duplication – used 

here as our measure of reproducibility – occurs 

at at least two levels of detail (mathematical 

markers and connection ratios). 

 

Figure 4.7 Although the volumes, surfaces, and numbers of 
parts represent distinctly different data types, their 
connection ratios show widespread similarities.  In effect, 
different data types can share the same rules – at the level 
of connection ratios (From Bolender, 2016a). This and 
similar plots use the CommunityGraphPlot (Mathematica) 
to identify clusters of related patterns.  

If, in turn, we plot the connection ratios of 

Figure 4.7 against species (Figure 4.8), the 

animals become grouped according to the 

similarity of their connection ratios.  Compared 

to mathematical markers, however, the 

connection ratios detect reproducible patterns 

far more effectively by removing the specificity 

attached to the names of mathematical 

markers.  They are uniquely suited to the task of 

detecting biological patterns at a level of detail 

below that of mathematical markers.  In both 

cases, however, we are looking at the 

phenotypic projections of genetic control 

mechanisms.           

 

Figure 4.8 Even after the connection ratios of the volume, 
surface, and number databases were combined and 
plotted against species, the connectivity persisted.  Note 
that these data include parts that range in size from 
organs to organelles, respond to a wide range of 
experimental conditions, and carry different 
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methodological biases.  Once again, we see reproducibility 
behaving as a key unifying principle in biological systems 
(From Bolender, 2016a).     

 

4.3.2 REPRODUCIBILITY IN THE LIVER 

Organs consist of cells, which we tend to study 

one cell type at a time.  However, the 

properties associated with an organ depend on 

the interrelationships of all the cells and 

subcompartments contained therein.  We can 

view these inter- and intracellular relationships 

as global patterns by detecting them with 

mathematical markers and connection ratios. 

Figure 4.9 uses the mathematical markers of 

hepatocytes, fat storing cells, endothelial cells, 

and Kupffer cells of the rat liver to look for 

reproducible patterns in the design of these 

cells.  When we plot the mathematical markers 

for the surface areas of cell organelles against 

the names of the individual cell types (e.g., 

"er1rer0.5ser0.4" → "hepatocyte"), the results 

indicate that all four cell types can share 

identical markers.      

Figure 4.9 In the rat liver (Adapted from Blouin et al., 

1977), hepatocytes, fat-storing cells, Kupffer cells, and 

endothelial cells display unique and shared mathematical 

markers.  Notice that all the cells are interconnected, 

which suggests that they are expressing the same genes in 

the same way (From Bolender, 2016a).  Such a finding is 

consistent with cells based on a modular design.  

If, however, we replace the mathematical 

markers of Figure 4.9 with their connection 

ratios ("part1part0.5part0.4" → "hepatocyte") in 

Figure 4.10, the number of cell-to-cell 

connections increases strikingly.  This tells us – 

once again - that cells populating an organ carry 

two distinct and reproducible patterns based on 

ratios, one with named parts (mathematical 

markers) and the other without named parts 

(connection ratios).   

Such patterns based on quantitative ratios 

suggest that we can detect phenotypically – at 

multiple levels - the genetic programming of cell 

organelles by the presence (or absence) of 

mathematical markers and connection ratios.  

Such an arrangement allows biology to compile 

phenotypic recipes by changing parts and 

connections.  This information may prove 

helpful in describing and explaining complex 

changes associated with differentiation, growth, 

and change – both normal and abnormal.  

Figure 4.10 When the mathematical markers of Figure 4.9 

are replaced by their connection ratios, the connectivity 

between the cells increases markedly.  Now the cells 

appear tightly interconnected phenotypically (From 

Bolender, 2016a).     
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4.3.3 REPRODUCIBILITY IN THE LITERATURE 

Notice in Figure 4.10 that we can identify two 

distinct populations of connection ratios, one 

unique to each cell (unshared) and another pool 

of ratios being shared by the four cell types.  

Why is this the case?  Do the shared ratios 

signal a coordinated control of the cell types or 

are they just house-keeping ratios – common to 

cells in general?  Will, for example, the shared 

ratios change when the hepatocytes are tasked 

with a specific job, such as metabolizing a drug 

or toxin?  In other words, will a local change in 

one cell type (hepatocytes) influence its 

neighboring cells?  The point in advancing such 

questions is that we can now ask and answer 

more probing questions using graphical 

analysis.   

To visualize the pattern of cell to cell 

connectivity at a global level, we can plot the 

organelle surfaces of all the cell types in the 

stereology literature database against their 

mathematical markers (Figure 4.11).  The 

pattern of shared markers appears once again.  

Of course, this is the pattern we would expect 

to see because we know that many species 

share many of the same genes.  

Figure 4.11 Widespread sharing of mathematical markers 

– derived from the surface areas of cell organelles - occurs 

within and across species (From Bolender, 2016a). 

If we take the same set of mathematical 

markers shown in Figure 4.11 and substitute the 

citation numbers for the cell types, we get a 

global view of cell to cell reproducibility as it 

exists in the stereology literature database 

(Figure 4.12).   

 

Figure 4.12 The plot shows reproducibility as a global 
property of published data.  Recall that the mathematical 
markers being used here include alphanumeric strings 
consisting of six variables – making it a hard test to pass 
(From Bolender, 2016a).  

When we replace the mathematical markers of 

Figure 4.12 with their connection ratios (Figure 

4.13), the resulting view of the literature 

suggests an underlying global pattern of even 

greater reproducibility.   

 

 

Figure 4.13 The plot displays the relationship between 
citations and connection ratios, as derived from the surface 
areas of cell oranelles.  It illustrates the presence of 
widespread reproducibility within the stereology literature, 
at the level of connecion ratios (From Bolender, 2016a).  
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If we liken the presence of global data to 

reproducibility, it now seems likely that the 

biology literature contains far more 

reproducible results than previously imagined.  

Indeed, demonstrating reproducibility seems to 

be a function of knowing how and where to 

look for it.   

 

4.3.4 REPRODUCIBILITY IN THE CHANGING 

BRAIN 

When using complex data types, reproducibility 

seems to exist everywhere we look.  With MRI 

data (IBVD), for example, we can look for 

duplicate patterns by calculating and plotting 

the connection ratios of normal patients (C) 

against those diagnosed with 24 different 

disorders of the brain (E):  

"C" → "part1part20part1.5" ,  

"E" → "part1part1part0.6". 

Figure 4.14 shows two sets of connection ratios 

(C, E) separated by a shared set wherein E=C.  

[Note that duplicate copies of the markers (E=E 

and C=E) were removed from each paper before 

aggregating the data and plotting the 

connection ratios.]  Although the central, 

shared category (C=E) shows that many of the 

connection ratios remain normal, many more 

become abnormal (E).  Since the figure 

identifies distinct populations of connection 

ratios for normal (C) and abnormal (E) brains, 

the connection ratios might also support 

diagnostic models similar to those based on 

mathematical markers (Figure 3.20), but at a 

coarser level of sensitivity.  Figure 4.14, 

however, leaves fundamental questions 

unanswered.  From where do the abnormal 

connection ratios come?  Do the abnormal 

ratios map back to damaged genes, to errors in 

post translational processing, or to something 

else?                          

Figure 4.14 When translated into connection ratios and plotted, the MRI data of the IBVD form three distinct groups of 
connection ratios – abnormal (E), shared (E=C), and normal (C).  The plot suggests that disorders of the brain result from 
widespread changes (Original data adapted from Kennedy et al., 2012; From Bolender, 2016a).         



76 
 

 

4.3.5 REPRODUCIBILITY TRAP 

Recall the standard definition of reproducibility:  

Standard Definition: “Reproducibility is defined 

as an ability to duplicate the results of an 

experiment either by the same researcher or by 

an independent one.”    

Let’s replace the standard definition with one 

more consistent with the way biology handles 

reproducibility. 

New Definition: Reproducibility is defined as an 

ability to duplicate a biological complexity with 

little or no variation. 

Consider the human brain.  If, for example, we 

select estimates for the amygdala from the 

IBVD and plot them, we find a widely dispersed 

array of data points (Figure 4.15), illustrating 

the typical biological variation we have come to 

expect.  If we begin by assuming that all the 

estimates are correct, which is the only fair 

thing to do, then the standard definition 

becomes open to criticism.  By assuming that 

reproducibility can be tested locally (when a 

global test is indicated), it deliberately sidesteps 

the rules of representative sampling and 

instead defines reproducibility as a local test of 

precision. 

How, for example, do we respond to someone 

who asks the obvious, but embarrassing 

question?  Is it possible to demonstrate 

reproducibility without considering accuracy?  

Although the correct answer is no, the standard 

definition says yes.     

This is a typical example of the mischief created 

by reductionist theory.  It strains our credibility 

by forcing us to assume indefensible positions.  

The new definition, which deliberately avoids 

the uncertainties implicit in the standard 

definition, copies biology by defining 

reproducibility as the same event that occurs 

locally and globally.      

Let’s see what happens when apply the two 

definitions of reproducibility to the amygdala as 

it exists in the IBVD.  If we assume that all the 

points graphed in Figure 4.15 are correct, then 

it seems fair to conclude that the amygdala 

displays a considerable degree of biological 

variation. 

Biology, however, requires both reproducibility 

(precision and accuracy) and adaptability 

(biological variation).  But how does biology 

install - reproducibly – an accurate version of 

the amygdala - in each human brain, without 

having to restrict its size? 

It defines reproducibility in the amygdala as the 

ratio of two volumes – the left amygdala (0.4 

cm3) versus the right (0.5 cm3).  If we start with 

the original 58 data points shown in Figure 4.15, 

plot the volume of left side against that of the 

right, we get the result shown in Figure 4.16.  

The disorderly cloud of points condenses onto a 

single point (expressed here as a decimal 

repertoire value).  By aligning our New 

Definition to biology’s left-right reproducibility 

rule for the amygdala (0.4:0.5), we discover that 

the same measure of reproducibility, precision, 

and accuracy apply to both local and global 

levels.  By emulating biology, biology rewards us 

by giving us access to its highly prized package 

of skills.    
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Figure 4.15 A plot of 58 estimates for the volume of the 

amygdala produces a cloud of data points (IBVD).  Note 

that each data point represents the average of several 

patients (Original data adapted from Kennedy et al., 2012; 

From Bolender, 2012).    

 

 

Figure 4.16 When the left and right sides of the amygdala 

are expressed as 58 ratios, the scatter plot shown in Figure 

24 is replaced by a single point (a decimal ratio value); 

(Original data adapted from Kennedy et al., 2012; From 

Bolender, 2012).  The Excel table displays 15 of the 58 rows 

of data that demonstrate global reproducibility using level 

1 complexity.  Note that all the markers in the list come 

from different citations (cit_nu)       

 

4.4 LEVEL 2 – BIOCHEMICAL 

HOMOGENEITY 

 

 

The postulate of biochemical homogeneity 

assures us that the members of a given 

population (e.g., organelle membranes) have 

the same biochemical composition, whereas 

the postulate of single location states that each 

constituent [i.e., marker enzyme] is restricted to 

a single cellular site (e.g., the endoplasmic 

reticulum).  To wit, a marker enzyme 

(biochemical constituent) distributes uniformly 

at a unique cellular location (morphological 

component).   

Recall that the postulate of biochemical 

homogeneity is captured theoretically and 

empirically as the Structure-Function Rule: 

𝑓(𝑥) = 𝑚𝑥. 

 

4.4.1 STRUCTURE-FUNCTION RULE AND 

BIOCHEMICAL HOMOGENEITY 

To test the postulates of biochemical 

homogeneity, we can plot the surface area of 

the endoplasmic reticulum (ER) of hepatocytes 

against the activities of several ER bound 

marker enzymes (Figure 4.17; Figures 4.18 to 

4.21), as described earlier (Bolender, 2017).  

Notice that these relationships of structure to 

function define ratios, which we can detect with 

linear equations that display R2 = 1 or ≈ 1 and 

pass through the origin (Figures 4.18 to 4.21).  

These equations predict membrane surface 

areas from enzyme activities of individual 

animals and adhere to the postulates of 

biochemical homogeneity.  [Note: the 
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membrane surface areas were corrected for the 

section thickness biases according to Weibel 

and Paumgartner (1978).]   

What can we learn about reproducibility from 

Figures 4.18 to 4.21?  The spread of the three 

blue points along the regression lines in these 

figures identify the biological variation, but each 

point, which represents an individual animal, 

defines the same ratio (the slope: ∆𝑦/∆𝑥) and 

generates the same equation (e.g., Figure 4.18: 

𝑦 = 0.1677𝑥).  This shows how the relationship 

of structure to function defines a highly 

reproducible property of biological systems.  To 

biology, reproducibility exists as families of 

rules, which exist in our parallel complexities as 

equations. (e.g., Figures 4.18 to 4.21).       

  

Figure 4.17 Data conforming to the postulate of 
biochemical homogeneity.  This required allocating – 
proportionately – the average enzyme activity to the 
membrane surface areas of individual animals (Original 
data adapted from Bolender, et al., 1978 (Paper 1); From 
Bolender, 2017). 

 

 

Figure 4.18 The R2 = 1 equations identify the relationship of 

the surface area of the ER to the biochemical activity of G-

6-Pase assayed in tissue homogenates (E+N).  (Original 

data adapted from Bolender, et al., 1978 (Paper 1); From 

Bolender, 2017). 

 

Figure 4.19 The equation identifies the relationship of the 

surface area of the inner mitochondrial membrane (IMIM) 

to cytochrome oxidase (CYOX) activity assayed in tissue 

G-6-PASE membrane enzyme

ER surface activity

m2/g liver U/g liver

tissue homogenate

er g-6-pase

animal 1 er-1 4.870 29.031

animal 2 er-2 4.310 25.692

animal 3 er-3 4.620 27.540
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homogenates (E+N); (Original data adapted from 

Bolender, et al., 1978 (Paper 1); From Bolender, 2017). 

 

Figure 4.20 The equation identifies the relationship of the 

surface area of the outer mitochondrial membrane 

(OMIM) to monoamine oxidase (MAO) activity assayed in 

tissue homogenates (E+N); (Original data adapted from 

Bolender, et al., 1987; Bolender, 2017). 

 

Figure 4.21 The equation identifies the relationship of the 
surface area of the plasma membrane (PM) to 
5’nucleotidase (5’NUC) activity assayed in tissue 
homogenates (E+N); (Original data adapted from 
Bolender, et al., 1978 (Paper 1); From Bolender, 2017). 

What do these four figures tell us?  We need 

biological variation to discover biology’s 

structure-function rule, which, in turn, defines 

reproducibility as individual data points sitting 

on the same regression line with R2 =  1 or ≈ 1. 

 

4.4.2 REPRODUCING EQUATIONS 

Figures 4.18 to 4.21 translate the postulate of 

biochemical homogeneity into equations.  But 

how do we verify these equations?   

If these equations capture biological rules, then 

a similar data set in another publication should 

capture the same rules (equations).  Let’s test 

this supposition. 

When we know an ER marker enzyme activity 

and its structure-function equation (Figure 2.4), 

for example, we can use this information to 

predict the surface area of the ER membranes 

from enzyme activities in each of several tissue 

fractions published in a different paper.  The 

results appear in Figure 4.22.  Notice that the 

equation has an R2 = 1 and passes through the 

origin as predicted by the structure-function 

rule (Equation 2.4).   

  

Figure 4.22 The equation of Paper 1 (Bolender et al., 1978; 

Figure 2.4) was used to predict ER surface areas from the 

biochemical data (G-6-Pase) of the tissue homogenate (H) 

and tissue fractions (E, N, M, L, P) in Paper 3 (Bolender et 

al., 1980). The result is a curve with an R2 = 1 and 

effectively passing through the origin.  Recall that de 

Duve’s postulates and Equation 2.4 predict such a result.  

From Bolender, 2017. 

This gives us two equations capturing the same 

rule, one from Figure 2.4 (paper 1) and the 

other from predicted ER surface areas (paper 

3): 

Original (Paper 1):    𝑦 = 5.9630𝑥 − 0.0066     (4.1) 

Predicted (Paper 3): 𝑦 = 5.9625𝑥 − 0.0066     (4.2) 

 

Since the equation of Paper 3 duplicates that of 

Paper 1, we can see that the same rule applies 

to both studies.  Such a result suggests that 

capturing biological rules with equations 

represents a reliable measure of precision, 

prediction, reproducibility, and to a lesser 

extent accuracy (recall that stereological 
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estimates typically carry volume distortions).  

Moreover, the successful reproducibility test 

shown in Figure 4.22 offers further empirical 

proof in support of the postulates of 

biochemical homogeneity.      

 

4.4.3 REPRODUCING EXPERIMENTAL RESULTS 

Next, we can try to reproduce the results of an 

experiment using the standard approach based 

on parts data and the new one based on 

copying and applying biology’s rules.  To this 

end, we will compare results published in two 

different papers (Paper 1: Bolender, et al., 

1978; Paper 2: Losa et al., 1978).   

 

Figure 4.23 The plots Illustrate that the same 
mathematical relationship exists between the data of 
Papers 1 and 2 (ER surface vs. activity of its marker enzyme 
G-6-Pase) because the two curves overlap.  Original data 
adapted from Bolender et al., 1978 (Paper 1), Losa et al., 
1978 (Paper 2); From Bolender, 2017.  

As shown in the top panel of Figure 4.23, the 

biochemical and morphological data – 

expressed as isolated parts - carry the expected 

biological variation, with comparable estimates 

differing by as much as 36%.  If, however, we 

express each result as a structure-function 

equation, the two papers generate remarkably 

similar equations and overlapping curves: 

Paper 1:  𝑦 = 5.9664𝑥 + .0053  (4.3) 

Paper 2:  𝑦 = 5.9567𝑥 − 1𝐸 − 04 (4.4) 

This tells us that the results of Paper 2 

reproduce the results of Paper 1.   

 Why is this example useful?  We’re building a 

case to support the argument that rule-based 

equations are reproducible.  We accomplished 

this by showing that the relationship of 

structure to function – defined by an organelle 

and a constituent marker enzyme – remained 

constant across different sets of animals 

repeatedly.  By defining and demonstrating 

reproducibility with equations operating locally 

and globally (Papers, 1, 2, and 3), we can 

predict outcomes with acceptable levels of 

confidence (Equations 4.1 to 4.4).  Since 

prediction is an expectation of a quantitative 

science, copying biology’s package of skills is 

proving to be a promising strategy.                

 

4.5 LEVEL 3 – ORGANELLE CHANGES 

 

 

A change in a biochemical homogeneity can be 

expressed as an enzyme density (ED) wherein 

units of enzyme activity are related to 1 m2 of 

ER surface area.  [Consider, for example, the 

three squares shown above (t0 → t1→tn); the 

blue dots indicate that the ED increases from 3 

to 5 Units/Surface.] 
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4.5.1 ENZYME DENSITY CHANGES 

Figure 4.24 shows how the enzyme densities of 

three ER marker enzymes of hepatocytes 

change in response to treatment with 

phenobarbital.  Notice that the drug induced 

two of the three enzymes, but at different rates 

and that the enzyme densities fit linear curves 

with R2s equal to or close to one.     

 

Figure 4.24 By expressing changes in membrane surface 

areas and enzyme activities with enzyme densities, distinct 

relationships of structure to function become apparent.  

Notice that the all three enzymes use the same general 

change rule (f(x) = mx + b), wherein the structure-function 

change equation serves as a higher-level rule for the 

variable enzyme densities (the dots).  In effect, two rules 

combine to change the relationship of structure to function 

in the ER membranes (Original data adapted from Stäubli 

et al., 1969; Bolender, 2018).   

At level 3 complexity where we detect organelle 

changes, our measure of reproducibility 

continues to derive from biology’s rules that 

translate into equations with R2s = 1 or ≈ 1.  

Accordingly, rule-based equations not  

individual data points become the preferred 

measure of reproducibility.       

 

4.5.2 REPRODUCIBILITY AS A NESTED 

COMPLEXITY 

For biology, reproducibility involves far more 

than simply duplicating an experimental result. 

Instead, it would validate a change by 

demonstrating that each of several individuals 

respond to a given change by applying the same 

set of rules.  Let’s look at an example.         

If we select the enzyme density curve for 

cytochrome P450 from Figure 4.24, we can run 

a reproducibility test on the ER membranes in 

hepatocytes as they change.   

In Figure 4.25, each ED data point defining the 

cytochrome P450 curve represents the average 

value for 5 animals.  If, instead, we plotted the 

individual animal data, we would expect all 15 

data points to produce the same curve 

(analogous to what we found in Figures 4.18 to 

4.21).  

 

Figure 4.25 The curve represents the hepatocytic response 
to phenobarbital (100 mg/kg body weight/day) over 5 days 
of exposure (Original data adapted from Stäubli et al., 
1969).   

The reproducibility test of interest to the 

hepatocytes – in each animal – was to produce 

enzyme densities – over time - that obeyed a 

structure-function change rule consistent with 

surviving the consequences of an exposure to a 

xenobiotic (phenobarbital).  Think of it this way.  

Of the 15 animals given the same problem to 

solve, all 15 came up with the same equation 

(4.5) obeying the same rule: 

Structure-Function Change Rule 

𝒇(𝒙) = 𝒎𝒙 + 𝒃;      

𝑦 = (0.4223𝑥) + 0.9187.    (4.5) 

𝐸𝐷𝑃𝐵(𝑑𝑎𝑦 5) = (0.4223 × 5 𝑑𝑎𝑦𝑠) + 0.9187.    

𝐸𝐷𝑃𝐵 (𝑑𝑎𝑦 5) = 3.03 𝑈/𝑚2     
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This tells us that the response of hepatocytes to 

phenobarbital is a rule-based event and as such 

reproducible. 

However, the structure-function change rule of 

Figure 4.25 is the result of an underlying set of 

structure-function rules (Equations 4.6 to 4.9); 

as shown in Figure 4.26.   

Structure-Function Rule 

𝒚 = 𝒎𝒙;  𝒎 =
𝒚

𝒙
; 𝑬𝑫 =

𝒚

𝒙
  

𝐸𝐷𝑃𝐵(𝑑𝑎𝑦 5) =
𝑈

𝑆
= 3.0319 𝑈/𝑚2 (4.6) 

𝐸𝐷𝑃𝐵(𝑑𝑎𝑦 2) =
𝑈

𝑆
= 1.7580 𝑈/𝑚2 (4.7) 

𝐸𝐷𝑃𝐵(𝑑𝑎𝑦 0.67) =
𝑈

𝑆
= 1.2054 𝑈/𝑚2 (4.8) 

𝐸𝐷𝐶𝑜𝑛𝑡𝑟𝑜𝑙(𝑑𝑎𝑦 0) =
𝑈

𝑆
= 1.0731 𝑈/𝑚2 (4.9) 

 

Figure 4.26 The rules responsible for changes in the ER 
membranes map back to the structure-function rules 
(Original data adapted from Stäubli et al., 1969).   

In Figure 4.26, the biological test of 

reproducibility requires that all 5 animals 

contributing to each data point (days 0 to 5) to 

produce ER membranes having the same 

concentration of cytochrome P450 (EDs) at 

roughly the same time (recall Figures 4.18 to 

4.21).  

Figures 4.25 and 4.26 show us how a cell relies 

on reproducibility to build one level of 

complexity onto another.  We can see this in 

the way the structure-function change rule 

depends on the success of the structure-

function rule.  In effect, reproducibility makes 

biological complexity possible and vice versa. 

Let’s add up the score.  The results shown in 

Figure 4.25 include a wealth of reproducibility 

events; 15 animals duplicated the change 

equation, whereas 5 animals duplicated the 

structure-function equation at each of 3 days in 

Figure 4.26.  This gives us a total of 30 examples 

of reproducibility for cytochrome P450.  Include 

the other two enzymes (n-demethylase and 

NADPH cytochrome c reductase), and the total 

reproducibility score for Figure 4.24 comes to 

90.  If we include the control, the score jumps 

to 95.  Basically, reproducibility exists as a 

ubiquitous property of biology.  It quickly 

disappears, however, when we mix pure 

biological data with methodological variations 

and throw away the rule-based connections 

between structure and function.        

 

4.5.3 REPRODUCIBILITY AS A CLUE 

Consider the 15 animals (5 per time point) used 

to generate Figure 4.24.  For each time point for 

every enzyme, the hepatocytes of each animal 

came up with more or less the same structure-

function and structure-function change 

equations in response to the phenobarbital 

challenge.  Moreover, all the animals solved the 

problem during the first day of exposure and 

anticipated the data points and slopes of all 

three curves.  How else could they have 

generated the equations with R2s = 1 or ≈ 1 

equations?   

But, how did they manage such mathematical 

magic?  Is this a biological phenomenon 

wherein groups of animals (and their 

hepatocytes) share spatial or temporal 

proximity such that the state of a given cell (or 

animal) cannot be determined independently – 

but only for the biological system as a whole?  

Are cells and animals - like their underlying 
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particles - entangled?  Alternatively, 

hepatocytes might just be very good at solving 

difficult optimization problems by applying the 

same rules under a given set of circumstances.   

In the first scenario, we might test for quantum 

entanglement at the level of cells, whereas the 

second one would require catching a cell in the 

process of solving a very difficult mathematical 

problem.  The second option would seem to be 

more consistent with expectations of a primer.   

Recently, it was reported that an amoeba can 

solve a travelling salesman problem - involving 

eight cities - faster than we can (Zhu et al., 

2018).  Since most would agree that such a feat 

is mathematically remarkable, we can infer that 

cells such as hepatocytes have what it takes to 

figure out and reproduce the results shown in 

Figure 4.24.  If, in fact, cells are mathematical 

wizards, then one day we might discover that 

each enzyme density shown in the figure 

represents an optimal solution to a linear 

programming problem.  However, since one 

equation (𝑓(𝑥) = 𝑚𝑥) is embedded in another 

(𝑓(𝑥) = 𝑚𝑥 + 𝑏), the hepatocytes might be 

solving multiple optimization problems 

simultaneously.   

What’s biology trying to tell us?  Should we be 

focusing our attention and resources on 

detecting and reproducing black box changes to 

assuage the demand for better P values or 

should we be copying and profiting from 

biology’s approaches to advanced 

mathematics?  Is biology needling us by offering 

a Hobson’s Choice?  To wit: “Either pursue 

biology as a complexity or use complexity to 

pursue biology.” 

 

4.6 LEVEL 4 – RATES OF CHANGE 

 

 

By fitting enzyme densities to a linear curve 

(zeroth order), the slope of the curve (m) 

becomes the rate constant k - the rate of 

change.   

 

4.6.1 RATE CONSTANTS 

Rate constant equations allow us to predict 

missing data points and hunt for similar 

equations. Moreover, reproducibility and 

prediction become interchangeable when we 

know the rules biology is using to bring about a 

change.    

Figure 4.27 uses zeroth order rate equations 

([𝐴𝑖] = [𝐴0] + 𝑘𝑡) to calculate the missing time 

points seen in Figure 4.24 at days 3 and 4.  The 

slopes of the curves, which identify unique rates 

of enzyme synthesis, exist under tight controls 

wherein the R2s are equal to or close to 1.      

 

Figure 4.27 Using enzyme densities and rate constant 
equations, the missing data points for days 3 and 4 were 
predicted (Original data adapted from Stäubli et al., 1969; 
Bolender, 2018). 
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By knowing the rate constants for multiple 

cytoplasmic organelles and the relationships of 

one constant to another, we can begin to 

unravel mathematically the complexity 

surrounding the phenotypic responses of cells. 

 

4.7 LEVELS 5, 6 – CELL AND ORGAN 

CHANGES 

 

 

 

The reference we choose for our data has a 

direct bearing on how we set our reproducibility 

arguments.  When expressed as an enzyme 

density, we now know that we can interpret a 

biochemical homogeneity at multiple levels of 

complexity: organ, cell, organelle, and 

molecule.     

 

4.7.1 BIASED RESULTS 

One of the advantages of interpreting biological 

data with equations is that we can see how our 

choice of data reference influences the results.  

If we assay a membrane bound marker enzyme 

(cytochrome p450) and relate it to the total 

liver weight and to a gram of liver, we can get 

results, for example, that differ by as much as 

70% (Figure 4.28).  Why?  In biology, data 

references that we routinely assume to be 

constants often choose to behave as variables.  

Consequently, they often generate faulty and 

misleading results. 

Consider the following example of a typical 

concentration trap.  When exposed to 

phenobarbital, hepatocytes synthesize 

substantial amounts of new ER membranes 

containing drug-metabolizing enzymes.  

Consequently, the hepatocytes get larger and 

fewer of them can fit into a gram of liver.  When 

compared to controls, the experimental time 

points report enzyme activity coming from 

fewer and fewer hepatocytes as the exposure 

continues over time (Figure 4.28).  Recall that 

such data become ambiguous because the data 

for each time point comes from a different 

number of hepatocytes.  As a result, 

experimental outcomes based on biological 

concentrations are likely to be correct only 

about 50% of the time – even when differences 

are reported to be statistically significant (see 

Chapter 6).    

 

Figure 4.28 Collecting data from the same number of 
hepatocytes (per liver) detected almost twice as much 
change - compared to the widely used gram of liver 
reference (Original data adapted from Stäubli et al., 1969; 
Bolender, 2018).    
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4.7.2 UNBIASED RESULTS 

We can avoid a heavily biased result by relating 

concentration data (e.g., enzyme activity/g 

liver) to an average cell or to the weight of the 

liver.  Recall that changes expressed per 

average cell or per organ produce the same 

relative results (detected as a similar amount of 

change).   

Since counting hepatocytes with stereology was 

not a viable option for the experimental studies 

under consideration (Bolender, 2018), absolute 

data derived from the organ weight became the 

method of choice.  For the enzyme data, this 

calculation consists of multiplying the liver 

weight (g) by the enzyme concentration - the 

units of enzyme activity per gram (U/g): 

 𝑈𝑙𝑖𝑣𝑒𝑟 = 𝑈 𝑔 𝑙𝑖𝑣𝑒𝑟⁄ × 𝑊𝑙𝑖𝑣𝑒𝑟 (𝑔).     (4.10) 

Although this approach works reasonably well 

for biochemical data, it becomes suspect when 

applied to the membrane surface area 

estimates of stereology.  Why?  Because a cm3 

of living tissue and a cm3 of fixed and 

embedded tissue do not necessarily contain the 

same number of cells.  Recall that stereological 

concentrations often carry biases related to 

volume distortions (Figure 3.17 and Chapter 5). 

A correction equation (CCC) mitigates both the 

distortion problem of stereology and the cell 

number problem of both methods by keeping 

the original number of cells in a cm3 of liver 

constant.  This is accomplished by allowing the 

cm3 of liver to “enlarge” in proportion to the 

enlargement of the hepatocytes, which are 

assumed to be wholly responsible for the 

changes in liver volume (or weight). 

After relating both the morphological and 

biochemical data to the total liver weight, the 

recalculated enzyme densities (Figure 4.29) 

were found to agree with the original estimates 

(Figure 4.24), which were calculated using a 

gram of liver.  In this case, equations were used 

to check on the reproducibility of a result after 

the corrections (CCC) were applied. 

 

Figure 4.29 The results shown in Figures 4.24 and 4.27 are 
the same (Original data adapted from Stäubli et al., 1969; 
Bolender, 2018). 

In this chapter, the focus of the reproducibility 

test shifted from duplicating data points to 

duplicating first principles, rules, and equations.  

This was accomplished by copying biology’s 

approach to reproducibility, wherein the same 

result is expected at both the local and global 

levels.  

 

4.8 SOLVING REPRODUCIBILITY 

Solving reproducibility begins by understanding 

what it brings to the sciences.  If we agree that 

it includes an ability to repeat the results of an 

experiment, then we are on the same page.  But 

what does a test of reproducibility test?  

Physicists and chemists, who view their science 

as a body of knowledge derived from first 

principles, theorize the existence of a principle, 

express it as an equation, and then test the 

validity of their idea empirically by running 

experiments.  Here the primary focus of our 

reproducibility test is not just to duplicate the 

experimental result, but to confirm the 

existence of underlying principles.     

Currently, the biological sciences have 

reinterpreted the reproducibility test of the 

physical sciences to include just the final 

experimental result.  In effect, we have become 
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willing to accept what comes out of a “black 

box” without the usual concern for what’s going 

on inside the box (the underlying principles).  

Consequently, when challenged, the best we 

can do is bemoan the presence of a 

reproducibility crisis (Baker, 2016).    

But we still need to ask the question basic to 

our understanding of reproducibility.  To wit, 

why does reproducibility work for the physical 

sciences within a theory structure based on 

reductionism, but this is not the case for 

biology?  The physical sciences succeed 

wonderfully within the framework of 

reductionism because they play in a one table 

league, which is based on the elements of the 

periodic table.   

Biology, on the other hand, suffers grievously 

under the simplifications of reductionism 

because it must play in a two-table league.  In 

addition to the periodic table, biology must also 

deal with its enigmatic gene table, which adds 

adaptability, allows rules to change, and 

involves nested complexities.   

This explains why our definition of 

reproducibility must be held to the higher 

standard of physics and chemistry.  To wit, if 

reproducibility cannot be demonstrated both 

locally and globally according to rule, it doesn’t 

count.  
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CHAPTER 5  

DATA 
 

The single, most difficult part of solving biology 

requires going to the literature, extracting data, 

and reformatting them in ways that provide 

access to biology’s rules and first principles.  

Rules and principles, which are highly 

reproducible, transform an otherwise chaotic 

literature into a well-oiled machine capable of 

diagnosis, prediction, and complex problem 

solving.     

On one thing we can all agree.  Our research 

efforts quickly become counterproductive when 

they fail to deliver results with acceptable levels 

of confidence.  Since evidence for these 

shortfalls continues to accumulate at an 

alarming pace, it seems reasonable to suggest 

that we may need to rethink many of our 

experimental approaches.  Such a task begins 

by asking the telling question.  If biology 

consistently delivers its results with precision, 

accuracy, and reproducibility, why can’t we do 

the same?  What’s stopping us?  At this point in 

our story, absolutely nothing.     

Getting help from biology requires a two-step 

approach.  After taking biology apart, we must 

put it back together.  The primer argues that 

this includes little more than giving biology back 

its connections, rules, and complexity.  But, 

why?   

Biology runs it business as a complexity with 

rules defined mathematically, the evidence for 

which appears to exist largely in its connections 

and relationships of structure to function.  By 

throwing away its connectivity, however, we 

unintentionally prevent biology from telling us 

what we need to know.  Because of this 

questionable practice, we as community must 

now deal with the ongoing crisis of confidence 

in our ability to do our job responsibly.   

To get our research data to qualify as precise, 

accurate, and reproductible, we need to 

identify new experimental strategies and data 

types capable of delivering such results.  In this 

chapter, we summarize some of the options 

now open to us. 

 

5.1 UNBIASED SAMPLING 

Unbiased sampling methods guarantee that 

every part in play has an equal chance of being 

sampled.  This applies to parts of all sizes, 

extending from microscopic to macroscopic 

from molecules to organisms.  A sample 

becomes representative only when it faithfully 

replicates all the parts of interest as they exist 

in the parent structure.     

The point of unbiased sampling is to obtain a 

small, but representative sample that can be 

extrapolated back to the original material.  Such 

a procedure represents the first step toward 

providing dependable and reproducible 

estimates.  The method of sampling, however, 

determines what types of information can be 

recovered.  Tissue homogenization provides an 

unbiased sample, but the process forfeits most 

of the structural information and we are left 

largely with total averages.  In contrast, 

sectioning intact tissues forfeits dimensional 

information that must be recovered with serial 

section reconstructions or stereological 

(probabilistic) methods.  In both cases, an 

adequate recovery depends on the validity of 

experimental designs, methodological biases, 

data types, and methods of analysis.   
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Let’s look at a few issues related to 

homogenization and tissue sectioning.    

 

5.1.1 HOMOGENIZING CELLS AND TISSUES 

(STRUCTURAL ORDER MINIMIZED) 

The structural integrity of the original object 

containing the parts of interest is lost by 

homogenizing cells and tissues.  This represents 

the standard reductionist approach to studying 

molecules and organelles, wherein biology is 

reduced to parts, which can be isolated, 

concentrated, and characterized.   

An intact tissue or a collection of cells is 

homogenized, and an aliquot taken for analysis.  

Such an aliquot represents an unbiased sample, 

provided the estimate can be extrapolated back 

to the original material.  In practice, the assay is 

repeated several times and the average taken.  

If the homogenate is fractionated, then the 

rules of analytical fractionation apply, wherein 

both recoveries and balance sheets will be 

needed to extrapolate and validate the data (de 

Duve, 1974).  Isolating parts and relating them 

to a mg of protein, however, may not always 

satisfy the unbiased sampling requirement. 

[Variations in decanting supernatants, for 

example, influence the amount of protein in a 

tissue fraction, which affects estimates for 

enzyme activities related to a mg of protein.] 

 

5.1.1.1 Advantages 

• Access to molecules: Homogenizing 
biological material provides access to 
molecules otherwise inaccessible in 
structural compartments.   

• Convenient counting of molecules: By 
extracting the molecules and suspending 
them in solution, their concentration can be 
determined using optical density (OD) 
methods (e.g., absorbance, transmission, 
etc.).   

• Automation: Collecting and analyzing the 
large amounts of data created by 
experiments in genetics, molecular biology, 
and biochemistry have been well-served by 
automation. 

• Formation of data ratios:  One of the best 
sources of order in biology exists in 
relationship of one part to another.  When 
two parts (e.g., molecules) are related to 
the same data reference (a volume, surface, 
mg protein, gram of tissue, et cetera), the 
reference variable cancels out, leaving a 
dimensionless ratio.  Forming such ratios 
minimizes methodological biases and 
animal variability – provided that each step 
of the experimental process is unbiased. 

 
 

5.1.1.2 Caveats 

• Forfeits structural information:  Since 
homogenization can disrupt the identifiable 
structural locations of a molecule, our 
ability to reconstruct the activities of that 
molecule as it exists in the original tissue 
can become problematic.  Recall that 
changes in a molecule of interest – located 
at one or more structural locations - will be 
detected as a single, total value referenced 
to its parent structure.  If, however, the 
total number of cells of interest changes, 
then the interpretation of the results can 
become questionable.  A change can be the 
result of a change in the cells, a change in 
the number of cells contributing data, or 
some combination of the two events. 

• Restricts biological engineering:  
Engineering biology (reverse and forward) 
depends importantly on structural 
information distributed throughout the 
biological hierarchy of size.  A homogenate 
no longer contains this original information.  
In short, reconstructing biological 
complexities requires both biochemistry 
and intact tissue morphology.    

• Introduces ambiguity:  An optical density 
represents a concentration, namely, the 
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number (N) of molecules contained within a 
unit of reference volume (V) or surface area 
(S):  

𝑂𝐷 = 𝑁/𝑉  𝑜𝑟 𝑂𝐷 = 𝑁/𝐴.  (5.1) 

In biology, an optical density detects an 

event that can be influenced by changes 

occurring both in the numerator and 

denominator of the concentration ratio and 

by the design of the experiment.  Recall that 

the data reference (the contents of the 

containing volume) is expected to be 

different for each experimental setting.  

Therefore, optical densities – as isolated 

units of information – can quickly become 

ambiguous and misleading.   

One of the easiest ways of getting into 

trouble quickly is to rely exclusively on 

concentration data (i.e., optical densities) 

for detecting biological changes (Figure 

7.25).  Such a practice requires two risky 

assumptions: the average cell size and the 

total number of cells of interest must 

remain constant, otherwise the data 

become ambiguous.  Dividing experimental 

by control concentrations becomes a high-

risk operation because the data references 

are likely to be incompatible (i.e., the data 

reference fails to cancel out).  See chapter 7 

for a worked example.  

• Data Inconsistencies: Biochemical assays 

and results tend to vary across laboratories 

(Figure 7.44).  Moreover, data related to a 

mg of protein adds to the confusion 

because it too varies across laboratories 

(Bolender, 2017). 

 

 

 

 

5.1.2. SECTIONING OR SLICING INTACT CELLS 

AND TISSUES (STRUCTURAL ORDER 

MAXIMIZED) 

The structural organization and 

representativeness of the original object is 

largely retained when designed-based sampling 

methods and tissue sectioning generate 

unbiased samples analogous to those coming 

from the tissue homogenates of biochemistry.   

 

5.1.2.1 Advantages 

• Provides ready access to parts and 
connections:  Morphology supports a 
mathematical biology in that all the visible 
parts can be quantified and connected 
throughout the biological hierarchy of size.   

• Supports engineering (reverse and 
forward):  Data collected from sections can 
contribute significantly to reverse and 
forwarding engineering.   

 

5.1.2.2 Caveats 

• Generates Biases: Tissue preparation, 
sectioning, staining, section thickness, and 
data collection (point and intersection 
counting) can contribute biases - detectable 
or undetectable.  Strategies for minimizing 
the effects of such biases exist and 
suggested workarounds can be found in the 
EBSP Reports (Bolender, 2001-2006; 2013).   

 

5.2 THE DATA PROBLEM 

When we take biology apart, we end up with a 

collection of parts that can be characterized in 

terms of their composition and properties.  To 

understand what’s happening to these parts 

when they change in a biological setting, 

however, the interrelationships of the parts 
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must be reestablished in accord with biology’s 

rules.   

Our purpose here is to consider two  types of 

data: simple (the result of reducing biology to a 

collection of parts) and complex (the result of 

reconstituting biology from simple data).   

 

5.3 SIMPLE DATA TYPES 

Simple data types include concentrations and 

absolute values.  Such data, which involve parts 

but not connections, constitute only a small 

fraction of biology’s information inventory.  

Consequently, parts data – by themselves – are 

severely limited in what they can tell us about 

the rules and principles under which biology 

operates.  It follows that limited data limit 

progress.   

Because simple data are compelled by our 

methods to carry a considerable load of 

biological variation and experimental bias, 

results derived therefrom tend to produce 

outcomes with low levels of confidence (Figure 

5.1).  The typical responses to such 

shortcomings include increasing sample sizes to 

detect changes, introducing unbiased sampling 

methods, correcting for methodological biases, 

and replacing concentrations with absolute 

values.  As Figure 5.1 suggests, simple data 

carry low levels of confidence because they are 

largely incapable of gaining access to biology’s 

rules and first principles.  Confidence comes 

from biology first, then from statistics. 

  

 

Figure 5.1 The reductionist approach to experimental 

biology reduces a complexity to a simplicity by taking it 

apart.  The resulting parts, which we can characterize 

quantitively as volumes (V), surface areas (S), lengths (L), 

and numbers (N), can be reported as absolute values or 

concentrations.  Missing from this scheme are the 

connections and the complexities – two of the three main 

factors that define biology.   

 

5.3.1 INCLUDE CONCENTRATION AND 

ABSOLUTE DATA 

Since we typically collect data as 

concentrations, which can have unstable 

reference volumes (Figures 6.3, 6.6, 7.2, 7.24, 

7.25), detecting biological changes often 

requires the additional step of converting 

concentrations into absolute values.  Problems 

arise, however, in that the methods used to 

make this conversion often rest on shaky 

assumptions.  Why?   

In biochemistry, for example, we can calculate 

an absolute value for an enzyme activity by 

multiplying a concentration (units of 

activity/gram of tissue) times the total weight of 

the tissue: 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑉𝑎𝑙𝑢𝑒𝑒𝑛𝑧 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑡𝑖𝑠𝑠𝑢𝑒 ×
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑔 𝑡𝑖𝑠𝑠𝑢𝑒
   (5.2) 
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In an experimental setting, wherein we look for 

a change in an activity, multiple factors can 

impact the change.  The activity in the cells can 

change, as well as the numbers, shapes, and 

sizes of cells – all of which can influence the 

result.  Since Equation 5.2 uses only two pieces 

of information, the tissue weight and the 

activity per gram of tissue, the absolute value 

delivers a black box result.  It tells us what 

happened, but not how it happened.  

Furthermore, we learn nothing from such a 

result about the effects of the methodological 

biases. 

An analogous situation exists for morphology 

with an added twist.  We can estimate, for 

example, the surface area of the ER in liver 

hepatocytes using a hierarchy equation: 

𝑆𝐸𝑅 = 𝑉𝑙𝑖𝑣𝑒𝑟×
𝑉𝑝𝑎𝑟𝑒𝑛

𝑉𝑙𝑖𝑣𝑒𝑟
×

𝑉ℎ𝑒𝑝

𝑉𝑝𝑎𝑟𝑒𝑛
×

𝑆𝐸𝑅

𝑉ℎ𝑒𝑝
   , (5.3) 

but we are still left with the ambiguity 

associated with changes in cell numbers and 

sizes plus the confounding effects of specimen 

preparation.   

In Equation 5.3, for example, we are multiplying 

the volume of fresh liver by three separate 

concentrations: two of which may come from 

light microscopy and a third from electron 

microscopy.  This means that to evaluate 

equation 5.3, we must assume that the 

contents of a cm3 of a part (e.g., Vhep) in the 

numerator (Vhep/Vparen) is the same as the 

corresponding one in the denominator 

(SER/Vhep) – otherwise they will not cancel out.  

Since different preparations for light and 

electron microscopy produce different volume 

distortions, the same units in the numerator 

and denominator become incompatible and fail 

to cancel out.  This means that we need to 

assume that we can evaluate Equation 5.3 (all 

denominators of the densities cancel) and that 

control and experimental data share similar 

biases (e.g., volume distortions and section 

thickness artifacts).  Since such assumptions are 

unrealistic, they quickly become indefensible 

(recall Figures 3.16 to 3.18).     

This inconsistency in reference volumes points 

to a fundamental flaw in the mathematical 

reasoning behind the use of hierarchy 

equations in biological stereology (Bolender, 

2013).  Alternatively, we can just concede that 

hierarchy equations such as 5.3 are likely to 

produce biased estimates.  However, this 

diminishes the authority of our experimental 

results.    

The best argument to make in defense of 

hierarchy equations is that we are applying the 

same preparative methods to both the control 

and experimental time points with the 

assumption that the volume distortions remain 

the same in both settings.  Although such an 

argument may provide local cover for a given 

experiment, it works against our larger goal of 

reproducing experimental results globally.    

The examples provided by Equations 5.2 and 

5.3 help to explain why our experiments tend to 

work at a local level, but not globally.  With 

multiple variables and biases in play, routinely 

demonstrating reproducibility within tight 

tolerances quickly becomes an unrealistic goal.  

Support for such a conclusion comes from a 

biology literature overflowing with 

inconsistencies and distressingly short on 

validity (Ioannidis, 2011). 

 

5.3.2 INCLUDE BIASED DATA 

In an experimental setting, absolute data (x) 

would appear to be more reliable than 

concentrations (x/y) for detecting biological 

changes because one variable is in play instead 

of two.  However, control and experimental 

data are likely to carry multiple and often 

different methodological biases.   
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A worked example will help.  Let’s see how a 

single source of bias (section thickness) 

operates when we use stereology to estimate 

membrane surfaces from electron micrographs.  

Although stereological estimates for surface 

areas assume sections with no thickness, the 

sections used for electron microscopy (EM) are 

thick enough to introduce a wide range of 

overestimates (see Weibel and Paumgartner, 

1978).   

The absolute surface of the hepatocytic ER 

calculated with Equation 5.3, for example, 

overestimates the unbiased value by about 30% 

(Figure 5.2).  Notice in the figure that 

membranes forming spheroidal shapes with 

diameters similar to that of the section 

thickness (SER) introduce the largest 

overestimates, whereas sheet-like 

arrangements of membranes account for the 

smallest (plasma membrane (PM)).          

 

Figure 5.2 Surface areas determined from electron 
micrographs of hepatocytic membranes can overestimate 
the true value by as much as 60.5% (Original data adapted 
from Weibel and Paumgartner, 1987).  

Now let’s use the overestimates given in Figure 

5.2 to see how the section thickness biases can 

impact the results of an experiment.  We know, 

for example, that the ER shuttles membranes to 

all the compartments listed in the figure except 

for some constituents of the inner 

mitochondrial membrane (IMIM).  [Recall that 

mitochondrial DNA codes for some of its 

membrane proteins.]     

If we ignore the Weibel-Paumgartner 

corrections, we can get membranes to change 

their surface areas simply by moving them into 

a cell compartment where they assume a 

different size and or shape.  For example, by 

transferring 1 m2 of SER membrane to the 

plasma membrane (PM), the pm would increase 

its surface area by only 0.5 m2 because the 

configuration of the membrane would shift 

from a high (SER) to a low (PM) section 

thickness bias.  It gets worse.  We would then 

have to explain what happened to the “missing” 

0.5 m2 of SER membrane surface area.  The 

point?  In the absence of section thickness 

corrections, biases remain unchecked and can 

produce all kinds of quantitative mischief.    

Why is it important to know about such 

seemingly minute details?  To get at the 

fundamentals of internal cell kinetics, we will 

need reliable biochemical densities and rate 

constants for the membranes and enzymes as 

they shuttle packets of information – encoded 

in membranes - throughout the cell.  By 

minimizing the effects of biases, we maximize 

our chances of finding R2 = 1 equations.  In 

return for paying careful attention to the 

details, we can improve our access to both the 

kinetics and the rules needed to work out the 

underlying genetic and cellular mechanisms – 

upstream and down.  Such information 

becomes critical when it becomes incumbent 

on us to explain the intended and unintended 

consequences of genetic engineering. 

 

5.4 COMPLEX DATA TYPES 

Figure 5.3 summarizes the complex data types, 

which rely on ratios, patterns, mathematical 

markers, connection ratios, relationships of 

structure to function, rules, and R2 = 1 

equations.   
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Figure 5.3 Complexity includes both parts and connections 

expressed as ratios. Data types, based on ratios, include 

mathematical markers, concentration ratios, and 

equations capable of delivering results with higher levels of 

confidence.  Such data types contribute to the parallel 

complexities needed to copy biology.   

Given the burden of assumptions, biological 

variation, and experimental biases, the 

likelihood of simple data types achieving 

widespread reproducibility at the levels some 

experts now consider acceptable (Colquhoun, 

2014) seems remote.  In a word, simple data 

dealing with simple questions is a construct far 

removed from the complex reality of biology.  A 

failure to note this distinction is likely to result 

in the continued erosion of confidence and 

public support (see online: NIH Research 

Funding Trends).    

 

5.4.1 COPY BIOLOGY 

A primer bearing the title of “solving biology” 

has little choice but to come up with a more 

capable collection of data types, which address 

the concerns of the experts and put us on a 

path to finding durable solutions to many of the 

hard problems pressing us for solutions.   

The strategy remains constant.  Copy biology’s 

game plan by coming up with data types 

running parallel to those of biology and then 

show that they derive from rules based on first 

principles.    

The tricky part of copying biology involves 

shifting our frame of reference from simple to 

complex – both theoretically and empirically.  

This involves converting the simple data 

published in the literature into complex forms.  

These new data types include parts and 

connections, serve as universal data types, and 

identify rules as reproducible patterns that 

translate into R2 = 1 and R2 ≈ 1 equations.  

Complex data types generate equations, 

equations reproducibility, and reproducibility 

engenders precision, accuracy, diagnosis, and 

prediction.  A primary reason for embracing 

complexity is to demonstrate that we can 

deliver big solutions to big problems – by 

recruiting the expert help we need from 

biology.     

 

5.4.2 USE DATA STRINGS 

Although biology controls whatever it needs to, 

it does so by allowing some rules to exhibit 

different properties when operating in local and 

global settings.  Biology designs its local rules 

such that they allow the size of biological parts 

to vary from one organism to another with the 

purpose of accommodating individual 

differences, such as body size, nutrition, and 

external influences.  Such differences, which we 

identify as biological variation, typically produce 

population averages lacking in the precision and 

accuracy needed to detect slight differences or 

to replicate experiments.  Although our current 

training tends to focus on the properties of 

parts, biology sees things differently.  It prefers 



94 
 

 

rules based on the ratios of its parts to define 

and maintain its precision, accuracy, and 

reproducibility.  Biology succeeds because it 

makes use of everything in its package of skills 

(Figure I1).   

Why?  Coordinated gene expression, for 

example, includes the production of many 

different molecular types at the same time, 

with each molecule displaying its signature rate 

constant (e.g., Figure 4.24).  At each time point, 

however, the relationship of one molecular type 

to another defines a ratio that continues to 

change until it reaches its new dynamic 

equilibrium (steady state).  In effect, it changes 

its structural-functional state – analogous to a 

thermostat reaching and holding a specific 

temperature.          

By replacing individual parts with strings of 

parts and connections, we can capture snippets 

of the rules being used by biology to turn its 

parts and connections into complexities.  Such 

strings satisfy the requirements of a complex 

data type. 

 

5.4.3 CONVERT SIMPLE DATA TO COMPLEX 

At level 1 complexity, going from simple to 

complex begins at the level of individual 

publications.  Parts involved in the same 

experiment and sharing the same data 

reference are rearranged into alphanumeric 

strings based on the ratios of the parts.  Such 

strings (data pairs, triplets, quadruplets, et 

cetera) include mathematical markers and 

connection ratios as summarized below. 

The letters a, b, c, d identify the names of parts 

and x, y, z, q the values of their corresponding 

ratios: 

Data Pairs (2 parts, 1 connection, 1 ratio) 

• ax:by 

• a(x/x):b(y/x) = raw data 

• a(x/x):b(y/x) = stored in decimal bins 

• axby = mathematical marker (based on decimal values) 

• partx: party = connection ratio 

• partxparty = connection ratio 

 

Data Triplets (3 parts, 2 connections, 2 ratios) 

• ax:by:cz 

• a(x/x):b(y/x):C(z/x) = raw data 

• a(x/x):b(y/x):C(z/x) = stored in decimal bins 

• axbycz = mathematical marker (based on decimal values) 

• partx: party: partz = connection ratio 

• partxpartypartz = connection ratio 

 

Data Quadruplets (4 parts, 3 connections, 3 ratios) 

• ax:by:cz:dq 

• a(x/x):b(y/x):c(z/x):d(Q/x) = raw data 

• a(x/x):b(y/x):c(z/x):d(Q/x) = stored in decimal bins 

• axbyczdq = mathematical marker (based on decimal 

values) 

• partx: party: partz: partq = connection ratio 

• partxpartypartzpartq = connection ratio  

This process of generating alphanumeric strings 

paper by paper produces universal biology 

databases wherein morphological and 

biochemical data share the same format.  Since 

such data sets define distinct patterns, they can 

be quite effective at generating clues and 

solving problems related to change, diagnosis, 

prediction, and reproducibility.    

 

5.4.4 MAP DATA 

Data strings detect patterns and reproducibility 

quantitatively.  Mathematical markers and 

connection ratios, which serve as major data 

types in universal biology databases (e.g., 

parallel complexities), extend the range of our 

frame of reference from local patterns to 

global.     

By accommodating large data sets assembled 

from the literature, data mapping provides a 

broad overview of what’s happening 

biologically.  Moreover, it teaches us two 

important lessons.  First, we learn that global 

data define reproducibility because they derive 

from local data.  In effect, local and global rules 

are the same – one predicts the other.  Second, 
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data strings can act as unique identifiers of 

specific phenotypic states in numbers large 

enough to display diagnostic and predictive 

properties.  This tells us that the same objective 

approach to clinical diagnosis can be expected 

to work effectively for both individuals and 

populations.              

 

5.4.5 DELIVER STRUCTURE-FUNCTION DATA 

A biochemical density (DB), for example, relates 

units of biochemistry to a constant 

morphological reference (e.g., 1 m2) by 

expressing it as a ratio of function to structure 

(F/S).  For stereological estimates, the 

references least likely to be corrupted by 

volume distortions include surface areas and 

lengths.  By leveraging mathematical 

connections existing between structure and 

function, biochemical densities allow us to 

access several levels of biological complexity – 

previously unavailable.   

 

5.4.6 GENERATE RATE CONSTANT DATA 

By defining the speed at which a concentration 

changes over time, a rate constant (K) allows us 

to predict data points (Equation 2.27) and to 

compare the behavior of several parts 

simultaneously as they exist in complex settings 

(Equation 2.18).  By substituting enzyme 

densities for the typical biochemical 

concentrations, we can now calculate rate 

constants relative to an organelle in situ.  Recall 

that the same rate constant calculated in situ 

and in vivo may differ by more than an order of 

magnitude (Figures 2.5 and 2.6).  

Rate constants also become viable candidates 

for contributing to the goal of mapping 

molecules produced in phenotypes back to their 

origins in the genome (Figure 7.27). 

 

5.4.7 PROVIDE LOCATION DATA 

By treating enzyme densities as the unknowns 

in pairs of simultaneous equations, both equal 

and unequal distributions of enzyme densities 

can be detected in situ (Figure 2.2). 

 

5.4.8 SUPPLY UNIVERSAL DATA 

A data type becomes universal when it can 

integrate data mathematically across the 

biology literature.  Mathematical markers, 

connection ratios, ratio chains, biochemical 

densities, enzyme densities, membrane 

densities, and rate constants serve such a 

function by translating published data into 

complex data types. 

 

5.4.9 CONNECT DATA ACROSS MULTIPLE 

LEVELS OF COMPLEXITY 

When exploring morphological and biochemical 

data separately to look for reproducible 

patterns (level 1 complexity), large databases 

populated with data strings generated from 

thousands of papers are needed.  When 

combined, however, morphological and 

biochemical data can provide ready access to 

biological rules at the level of individual papers 

(complexity levels 2 to 6). 

 

5.4.9.1 Level 1 Complexity 

The principle data types of level 1 complexity 

include mathematical markers and connection 

ratios arranged most often as triplets.  Ratio 

chains (Equations 7.9 and 7.14), which connect 

biochemical or morphological data into linear 

strings, fall into this category. 
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5.4.9.2 Levels 2-6 Complexity 

Units of enzyme activity and membrane surface 

areas (related to a gram of the parent structure) 

provide the raw data for calculating two 

complex data types: enzyme (U/S) and 

membrane (S/U) densities.  Structure-function 

equations, which encapsulate biological rules, 

use these densities to predict unknown 

biochemical activities and membrane surface 

areas and to connect multiple levels of 

complexity. 

 

5.4.10 BLACK BOX DATA 

When first encountering the biology literature, 

the beginner soon becomes overwhelmed by 

the abundance of methods and data types.  

Under reductionism, we can put practically 

anything we wish into an experimental black 

box because its overriding goal is to generate 

changes that can be demonstrated statistically.   

Under complexity theory, we replace the black 

box approach by including data types derived 

from biological rules: 

(1) 𝑥: 𝑦: 𝑧, … , 𝑛  (𝑟𝑎𝑡𝑖𝑜), 

(2) 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 

𝑓(𝑥) = 𝑚𝑥  

(3) 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶ℎ𝑎𝑛𝑔𝑒 𝑅𝑢𝑙𝑒, 

𝑓(𝑥) = 𝑚𝑥 + 𝑏 , where 

m equals an ED or MD, and  

𝐸𝐷 = 𝑈/𝑆  (𝑒𝑛𝑧𝑦𝑚𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦) 

𝑀𝐷 = 𝑆/𝑈 (𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦). 

 

5.5 BIOLOGICAL CHANGE – BY RULE 

If all biological data are related to something, 

then the question being asked of biology should 

be directed to that something capable of 

answering the question being posed.  The point 

being that each of the many somethings 

supplies its own interpretation of the answer. 

An organism, organ, cell compartment, average 

cell, one gram (or cm3) of a tissue or organ, a 

mg of protein, et cetera all qualify as 

somethings.  Although these data references 

are not equivalent, most are routinely used 

interchangeably to test biological data for 

significant differences with the belief that all 

such tests are detecting biological events.  Since 

this is not the case, the biology literature is 

awash with contradictions.  This is one of the 

important lessons that biology teaches with its 

complex data types. 

 

5.5.1 MATCHING THE RIGHT QUESTION TO 

THE RIGHT DATA 

Experiment questions are highly dependent on 

data type.  To get the right answer to our 

question, we must know what data type to ask.  

For example, let’s ask a gram of liver and an 

average hepatocyte to tell us how much the ER 

membranes increases in response to the drug 

phenobarbital.  Figure 5.4 illustrates the 

answers supplied by these two different data 

types.   
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Figure 5.4 Top: The average hepatocyte displayed changes 
large enough to detect significant differences at all three 
time points with acceptable P values, whereas the gram of 
liver data didn’t do as well.  [In the original study a change 
was detected only at day 2 using a specific dimensions 
reference.]  Bottom: On average, the gram of liver 
detected only 44% of the actual changes in the ER 
membranes.  At day 5, however, it missed 70% of the 
change (Original data adapted from Stäubli et al., 1969). 

The average hepatocyte delivered a substantial 

change (99%), whereas the gram of liver 

struggled to detect a change (29%).  Figure 5.4 

shows just how ineffective a gram of liver can 

be when used to detect a biological change.  

Missing 70% of the change at day 5 is difficult to 

write-off as an unavoidable methodological 

error.  

Now consider Figure 4.26 in the previous 

chapter.  What does it say about the membrane 

changes?  May we conclude that the 

hepatocytes respond to phenobarbital by 

adding new ER membrane quickly and then 

enriching it progressively with new cytochrome 

P450 molecules?  No (see Figure 5.4).  We’re 

asking a gram of liver to tell us something about 

the changes in ER membranes when we should 

be asking an average hepatocyte.   

The point of Figure 4.26 was to ask the gram of 

liver to cancel out so we could replace it with a 

one square meter of membrane surface area – 

the reference for the enzyme densities (U/m2).  

In turn, we could use the enzyme densities 

(expressed as a membrane density (MD = ED-1)) 

with the total enzyme activity to calculate the 

relative average cell changes in ER surface 

areas, as shown in Figure 5.4.  

 

5.5.2 RIGHT QUESTIONS = RIGHT ANSWERS 

Knowing how to ask biology questions becomes 

a key piece of our new and evolving skill set.  

We are learning what to ask and where and 

when to ask it. 

Ask a gram (or cm3) of an organ or tissue for: 

1. Morphological values/g tissue 

2. Biochemical values/g tissue 

3. Ratios of parts (morphological or 

biochemical) 

4. Enzyme densities 

5. Membrane densities 

6. Numbers of cells/g tissue 

Ask an enzyme or membrane density to: 

1. Access biological complexity 

2. Link the events that define a change 

3. Detect steady and transitional states 

4. Provide rate constants 

5. Look for reproducibility 

6. Assemble mashups  

7. Serve as a target for genotypic data 

Ask an average cell for: 

1. Ratios of parts 

2. Changes in morphological components and 

biochemical constituents 

3. Changes in cell volume 
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Ask an organ, gland, or tissue for the: 

1. Ratios of parts 

2. Total amounts of a cellular component 

(morphology) 

3. Total amounts of a cellular constituent 

(biochemistry) 

4. Changes in the number of cells 

5. Relative changes in an average cell (when 

the total number of cells remains constant)  
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CHAPTER 6 

DATABASES 
 

Solving biology is largely an exercise in allowing 

two things to interact – research data and 

technology.  Although solutions require unique 

data sets derived from databases, interpreting 

outcomes benefits importantly from hands on 

experience with laboratory methods, relational 

databases, programming, and standard 

software packages (e.g., PowerBuilder (Sybase), 

Excel and Access (Microsoft), Mathematica 

(Wolfram), and Photoshop (Adobe)).   

 

6.1 GETTING STARTED 

 

6.1.1 STEEP LEARNING CURVE 

The hardest and most challenging part of the 

discovery process consists of building an 

original database from the biology literature.  

The difficulty arises from the need to do several 

ill-defined things at the same time – without 

knowing at the outset what will eventually 

work.  These include setting up a nomenclature 

(the names of parts preferred by authors), 

designing and testing database models (logical 

and physical), and programming user interfaces.  

The beginner and expert alike can expect a 

steep learning curve punctuated with more 

than a few false starts. 

 

6.1.2 ACCESS TO PUBLICATIONS 

The second most challenging task includes 

finding the best papers to put in the database 

and then securing copies.  Experience suggests 

that at least three approaches work: request 

reprints from authors, download open access 

copies from the internet, and copy articles from 

journals.  To end up with a production database 

containing data from 5 to 6,000 papers, expect 

to look at more than 10,000 articles.   

 

6.1.3 STRATEGY 

Databases become a primary problem-solving 

tool when dealing with biological complexity.  

Once stored in a database, published data can 

be translated into derived databases (parallel 

complexities) to solve specific problems.  

Solutions appear as patterns, graphs, and 

equations.      

 

6.2 STEREOLOGY LITERATURE 

DATABASE 

 

6.2.1 DATABASE MODELS 

Relational databases involve two models, logical 

and physical.  One designs, the other executes. 

 

6.2.1.1 Logical Model 

Figure 6.1 displays the logical model used for 

the stereology literature database.     
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Figure 6.1 The logical database model for the biology 
literature includes a collection of entities (boxes) and 
relationships (lines), as defined by the rules of relational 
databases (From Bolender, 2001a). 

The model includes the biological hierarchy 

(genes to organisms) in duplicate, with 

connections extending between control and 

experimental data.  Although such a model 

increased the difficulty of data entry, it proved 

to be quite effective for finding clues and 

generating derivative databases. 

 

6.2.1.2 Physical Model 

The physical model includes the user interface 

where data are entered or retrieved (Figure 

6.2). 

 

 

Figure 6.2 Top: The data entry process consists of 
assembling a hierarchy of parts (entities) by moving from 
one tab to the next (left) and then assigning numerical 
values to the parts (right) (From Bolender, 2001a).  
Bottom: The stereology literature can be reformatted into 
any number of different configurations.  This table 
translates concentrations and absolute values into data 
pairs, designed specifically to hunt for evidence of 
reproducibility in the literature (From Bolender, 2001a).   

 

6.2.2 SUPPORT DATABASES 

Populating a literature database relies on other 

databases to help with data entry.  The 

nomenclature and calculator databases serve as 

examples. 

 

6.2.2.1 Nomenclature Database 

The problem of assuring that the names in the 

database reflect those being used by most 

authors in the literature can be solved by 

compiling a database of lookup tables (Figure 

6.3).  By using these tables as templates, new 

entries adhere to the naming conventions 

preferred by most authors.     
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Figure 6.3 The task of standardizing data entry to a 

common set of terms and hierarchical locations requires a 

familiarity with the literature that comes only after 

entering data from thousands of papers.  The result is a 

data entry format and nomenclature preferred by most 

authors.  The green screen serves as the hierarchical 

template for data entry; terms and definitions appear at 

the right (From Bolender, 2001a).    

 

6.2.2.2 Calculator Database 

An unexpected finding was that a substantial 

proportion of published data appear exclusively 

in graphs.  Consequently, a simple to use 

program was needed to speed the task of 

converting such graphs into numerical values.  

The data entry screen shown in Figure 6.4 offers 

an effective solution.  A user supplies the 

information requested by the work screen and 

in turn the program calculates and displays the 

numerical value (highlighted in yellow).    

          

Figure 6.4 This work screen simplifies the task of turning 
graphs into numerical data (From Bolender, 2001a). 

 

6.2.3 DERIVED DATABASES 

Once designed and populated, the stereology 

database was used to generate derived 

databases.  These databases, which usually 

consist of a single table, address specific issues. 

The most effective problem-solving format 

includes parallel complexities, which translate 

the original published data into patterns and 

data types that can address a wide range of 

questions. 

 

6.2.3.1 Concentration Trap Database 

The concentration trap database, which 

compares the same data expressed as 

concentrations and absolute values, identifies 

the risk involved when using concentrations to 

detect biological changes (Figure 6.5).   With 

stereological data, for example, the database 

tells us that we can expect a correct result for 

concentration data only about 50% of the time.   

 

Figure 6.5 Concentrations and absolute values detect the 
same biological changes only about 50% of the time.  
Highlights identify the change: red = increase, blue = 
decrease, and green = no change.  When – in the same row 
- the same highlight color appears on both the 
concentration and absolute values, they both detect a 
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change in the same direction – otherwise not (From 
Bolender, 2001a).     

An important limitation of the concentration 

trap database is that neither of the two data 

types can be tested for accuracy.  Since both 

concentration and absolute data carry 

methodological biases, the database offers 

keen insights into the problems created by 

operating within a theory structure based on 

reductionism.  Suggested workarounds appear 

in the yearly reports and throughout the primer 

(Bolender, 2001a-2010).   

 

6.2.3.2 Counting Molecules Database 

Solving biology mathematically benefits 

importantly from a basic understanding of the 

fine points surrounding biochemistry and intact 

tissue stereology.  Since the results of each 

method involve many interacting variables, 

recognizing the contribution of each to the 

whole becomes a challenging task.   

By taking biology apart, however, we introduce 

a new level of uncertainty.  Now we must 

manage two entwined complexities 

simultaneously, one coming from biology and 

the other from our research methods 

(Bolender, 2016b).  This requires a strategy 

based on minimizing methodological biases so 

that biological complexity can shine through. 

Fortunately, simulators can provide a basic 

introduction to these biases by showing how 

key variables interact.  The counting molecules 

program covers the essentials for both 

biochemistry and stereology.  In Figure 6.6, 

panels 2 and 3 of the worked example show 

results typically published, whereas panel 4 

explains what really happened.  Comparing 

outcomes with and without complexity offers 

helpful insights into the problems created by 

trying to interpret biological data using the 

incomplete data sets available to most 

investigators.   

After spending less than an hour exploring 

different scenarios with the simulators, the 

beginner begins to appreciate what can happen 

to experimental results when multiple variables 

are in play.  The point to take from the exercise 

is that by keeping complexity out of our 

experimental approaches, we can’t keep up 

with biology because it must operate as a 

complexity.  Biology can’t pick and choose the 

way we can because it must adhere to rules 

based on first principles.        
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Figure 6.6 Detecting changes in molecules by comparing 
concentrations (i.e., optical densities) carries a risk.  Panel 
2 shows that the concentration of molecules – expressed as 
a numerical density (N/V) – is the same (100%) for both 
groups at the beginning of the experiment 
(1,000,000/cm3).  After running the experiment, panel 3 
shows a decrease in the number of molecules from the 
control value of 100% to 83%.  By demonstrating a 
significant difference, most investigators would conclude 
that the experimental exposure effectively diminished this 
population of molecules.  Many black box studies end here.  
Panel 4 tells a different story with the same data.  It shows 
that the exposure caused the cells to swell slightly which 
meant that it took fewer of them to fill a cm3.  Fewer cells 
meant fewer molecules per cm3.  In fact, the absolute 
number of molecules remained unchanged.  Hidden 
variables (panels 2 and 3) deprive the investigator of the 
critical information needed to interpret the results of this 
experiment correctly (From Bolender, 2005).    

When detecting a biological change, the worked 

example shown in Figure 6.6 explains why 

estimates based on absolute data are 

preferable to those of concentration data.  

However, such a simulation doesn’t account for 

the distortions in the reference volumes that 

can and do occur in experimental settings.  

These disconnects between theory and practice 

occur whenever our experimental designs fail to 

account for the unique properties of biological 

systems and the biases introduced by our 

experimental procedures.   

 

6.2.3.3 Design Code Equation 

Database 

Design code equations enabled a fishing 

expedition, wherein stereological data were 

fitted to R2 ≈ 1 equations with the sole purpose 

of discovering if quantitative patterns (read 

biological rules) existed in published data.  Since 

these equations found many corroborating 

patterns (e.g., Figures 6.7, 6.8), the next step 

consisted of reformatting the data into ratios to 

look for global patterns.  To this end, the data 

populating the stereology literature database 

were converted into a database consisting of 

data pairs (axby), as described in Chapter 5. 

 

 

Figure 6.7 Local changes during development of the human 
kidney identify a distinct ordering of parts (Original data 
adapted from Hincliffe et al., 1991; From Bolender, 2003). 
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Figure 6.8 Global changes in the lungs of three animal 
species taken from 10 papers fit the same regression 
equations.  (From Bolender, 2003).  All the points included 
fall on the regression lines. 

 

6.2.3.4 Data Pair Ratio Databases 

The R2 ≈ 1 (e.g., 0.999) equations can detect the 

relationship of one part to another as a ratio 

(x:y).  A more efficient way of producing ratio-

based equations (called repertoire equations) is 

to assemble a data set for each paper by 

generating all possible permutations - taking 

two parts at a time according to Equation 2.3.  

When applied to thousands of papers, this 

produces a universal biology database - a user-

friendly version of the biology literature.  By 

standardizing published data, an otherwise 

disconnected literature becomes one big 

experiment.     

 

6.2.3.5 Universal Biology Databases 

The data pair database yielded a wealth of new 

patterns, routinely finding order where 

previously none was known to exist. Figure 6.9 

shows an example of repertoire equations 

turning clumps of data into an orderly set of 

equations wearing R2 = 0.999.   

Figure 6.9 Regression analysis can turn clumps of data 

(before) into sets of parallel repertoire equations (after; 

From Bolender, 2004).  In short, the different cell types in 

the testis show a remarkable degree of order.   

By upgrading these equations to the decimal 

version (decimal repertoire equations), the 

sorting and filtering features of the new 

universal database simplified the task of finding 

global patterns and generalizations in the 

biology literature.  The first major product of 

this decimal interpretation of the literature was 

the biology blueprint database. 

 

6.2.3.6 Biology Blueprint Database 

The purpose in assembling the blueprint 

database was to determine if similar patterns 

existed within and across species.  It allows us 

to ask a fundamental question.  To what extent 

do species known to share similar genes share 

similar phenotypes?    

Assembling such a database consisted of first 

assigning data pairs – expressed as x:y ratios -  

to 81 bins (with intervals ranging from 0.001 to 

100000) and then recording the frequency (n) 

of a given ratio in each bin (Figure 6.10).   



105 
 

 

Figure 6.10 Top: Data entry consisted of linking all the 

connections (ratios) associated with a given pair of parts.  

Bottom: The biological blueprint documents the 

distribution of data pairs, ratios, valences, and frequencies 

(From Bolender, 2006).   

The resulting blueprint shows how organisms 

define the relationship of one part to another 

with ratios and the extent to which a given 

phenotype displays a given relationship – within 

and across species.   

In effect, the blueprint offers an empirical 

overview of the quantitative core of biology – as 

it exists in the postmortem data set of the 

stereology literature database.  It shows that 

biological parts larger than molecules display a 

stoichiometry of whole numbers with many 

similarities existing within and across species.  

This provides preliminary evidence to suggest 

that organisms sharing the same parts with the 

same ratios are reading from the same genetic 

scripts.  Moreover, the rules supervising these 

shared ratios appear to be highly conserved 

across biology.  [Point: Although these patterns 

are reproducible, they are not necessarily 

accurate because stereological estimates 

typically carry methodological biases.]   

The blueprint also serves as a convenient 

lookup table for finding specific phenotypes 

(Figure 6.11).  For example, a given pair of parts 

(ax:by) often display several distinct valences, 

characterized as multiples of whole numbers 

(x:y).  For example, the ratio of mitochondria to 

peroxisomes can be 10:1, 20:1, and 33:1 – 

depending on the cell, animal, and experimental 

setting.  When writing simulations, 

reconstructing networks of equations, and 

trying to explain complex changes, such 

phenotypic information contributes importantly 

to the modelling process.  

 
Figure 6.11 The SQL interface of the biology blueprint 

database shows the result of selecting an x:y ratio of 1:2.  

As items are selected from the query screen, the SQL script 

at the bottom of the screen updates accordingly.  Clicking 

on the Query Button sends the request to the database, 

which promptly returns the information requested (From 

Bolender, 2006).   

The blueprint database suggests that biology 

has evolved a universal parts inventory to draw 

from when assembling species, growing, making 

repairs, or adapting to disease.  In effect, the 

widespread distribution of identical data pairs 

highlights this modular property of biology.  

Figure 6.12 summarizes the blueprint modules.  

Roughly 40% of the total blueprint entries 
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(4,296) rely on just six decimal ratios (x:y): 50 to 

1, 10 to 1, 3 to 1, 1 to 1, 2 to 3, and 1 to 10.  

Figure 6.12 The figure lists the ratios in the biological 

blueprint occurring with the greatest frequency (From 

Bolender, 2006). 

For neurons, however, the percentage of the 

most popular ratios goes up to about 70%.  

Neurons prefer four decimal ratios (x:y): 3 to 1, 

2 to 1, 3 to 2, and 1 to 1. 

The point to take from Figure 6.12 is that 

biology controls the relationship of one part to 

another deliberately.  Since the same ratios can 

apply to parts ranging in size from small to 

large, it looks as if the entire biological 

hierarchy is subject to a common set of design 

rules.  By simply forming ratios of small whole 

numbers, we can see the range of the rules 

biology uses to order its parts.  Stoichiometry, a 

first principle well-known in chemistry, also 

seems to apply to biology.  Either biology has 

come up with its own approach to forming 

ratios, which it may do genetically, or it may be 

piggybacking on the order already established 

by chemistry.  Alternatively, it may be doing 

both. 

 

6.2.3.7 Triplet Databases 

Using ratio data offers several advantages not 

the least of which is the ability to increase our 

level of play.  Starting with a relatively small 

number of published data points, we can end 

up with a considerably larger data set 

containing far more information.   

Consider data triplets – having three named 

parts a, b, and c with values x, y, and z.  Three 

parts taken three at a time can be arranged six 

different ways: ax:by:cz, ax:cz:by, by:ax:cz, 

by:cz:ax, cz:ax:by, and cz:by:ax. 

The reason for including six copies of the same 

information is that it optimizes outcomes.  

When looking for global patterns across many 

papers, we are least likely to miss a match when 

all possible permutations are included.  

Moreover, if a single triplet misses a pattern 

because of the decimal binning, we still have as 

many as five additional chances to catch it.     

 

6.2.3.8 Mathematical Mapping 

Databases 

The mathematical mapping databases were 

developed specifically to work with the 

graphing programs of Mathematica.  The first 

such database, which included 2,000 triplet 

ratios, came from a single paper that used MRI 

to estimate the volumes of 42 parts in the 

brains of normal and schizophrenic patients 

(Goldstein, et al., 1999).   

Figure 6.13 shows the original 42 brain parts 

first as a collection of isolated parts and then as 

a complexity displaying both parts and 

connections.  Alternatively, we can display the 

connectivity map of the cerebral cortex in two 

dimensions (See Figure 3.10). 
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Figure 6.13 The original data set of the normal cerebral 

cortex included 42 isolated data points expressed as 

volumes.  The 3D plot shows how 42 parts of the normal 

human cerebral cortex interconnect (Original data adapted 

from Goldstein, et al., 1999; From Bolender, 2011).    

Let’s look at the mapping procedure with an 

example.  Consider two data pairs that relate 

one part to another and share a similar part.  

Parts a, b, and c with their ratios (1:2:3) 

generate, for example, the following data pairs: 

𝑎1: 𝑏2 

𝑎1: 𝑐3 

This means that a1 maps to both b2 and to c2: 

𝑎1 → 𝑏2 

𝑎1 → 𝑐3, and  

𝑏2 → 𝑎1 → 𝑐3  

When mapping parts of the brain with 

Mathematica, we would substitute the 

following notation: 

"𝑓𝑟𝑜𝑛𝑡𝑎𝑙 𝑝𝑜𝑙𝑒" → "𝑐𝑖𝑛𝑔𝑢𝑙𝑎𝑡𝑒 𝑔𝑦𝑟𝑢𝑠" 

"𝑓𝑟𝑜𝑛𝑡𝑎𝑙 𝑝𝑜𝑙𝑒" → "𝑖𝑛𝑠𝑢𝑙𝑎" . 

Such a mapping strategy provides a convenient 

way of visualizing large biological data sets 

before and after a change.  For additional 

examples, see Bolender, 2011.  

If we focus on the relationships of just one part 

– the angular gyrus – we can see that it 

connects to everything else quantitatively by 

sharing similar ratios (Figure 6.14). Notice in the 

figure that some parts (identified by blue dots) 

attract more connections than others.  Recall 

that earlier we found a similar pattern for cell 

components (Figures 3.7 to 3.9).   

 

 

Figure 6.14 The mathematical map identifies the parts and 
connections of the angular gyrus in the normal human 
cerebral cortex.  Notice that all 42 parts are connected 
(Original data adapted from Goldstein et al., 1999; From 
Bolender, 2011). 

 

6.3 INTERNET BRAIN VOLUME 

DATABASE (IBVD) 

With the online publication of the Internet 

Brain Volume Database (IBVD; Kennedy, et al., 

2012; Poline et al., 2012), we now have access 

to a data set well-suited to the task of looking 

for patterns and generalizations in health and 

disease.  To this end, the published data were 

converted into mathematical markers and 

analyzed graphically with Mathematica.  

This process includes several steps.  After 

entering the names of the parts from a given 

paper as a string (a, b, c, … n) into Mathematica, 

the permutations program returns a list of all 

possible triplets - taking n parts three at a time 

(Equation 2.3).  Next, the list of names is copied 

to an Excel spreadsheet where their numerical 

values are entered, used to calculate ratios, and 

assigned decimal repertoire values (Figure 
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7.13).  The next step consists of copying all the 

data from individual papers to a single 

spreadsheet, saving it as a text file, and 

exporting the file into the table of a relational 

database (Access (Microsoft)).  At this point, the 

database is sorted, filtered, and returned to 

Excel to be reformatted for analysis in 

Mathematica.   

As a general observation, a spreadsheet works 

best for modifying data, whereas the database 

does extremely well at finding complex patterns 

especially in large data sets.  See the yearly 

reports (Bolender, 2012 to 2015) for further 

details and worked examples. 

 

6.3.1 CLINICAL DIAGNOSIS 

We have two general approaches to diagnosing 

disorders of the brain - subjective and objective.  

The subjective one – presents the greater 

challenge because extensive overlap exists 

between disorders and symptoms (Figure 6.15).  

Consequently, experts viewing the same patient 

do not always arrive at the same diagnosis.  

Such a reality confirms the wisdom of pursuing 

objective approaches to clinical diagnosis.   

 

Figure 6.15 The table identifies symptoms for various 

disorders as impairments.  Given their subjective nature 

and the fact that the same impairment often applies to 

many disorders, making a differential diagnosis becomes 

problematic (Adapted from Internet Mental Health © 

1995-2015 Phillip W. Long, M.D.; From Bolender, 2015).   

Since the IBVD includes clinical data from 

normal individuals and those with diagnosed 

disorders, an objective approach now becomes 

a viable option.  By translating the MRI data of 

the IBVD into mathematical markers, we can 

generate databases containing a large enough 

number of patterns to work out an objective 

approach to clinical diagnosis.  Such diagnostic 

databases come with the added advantage of 

showing us just how tightly biology connects 

and controls everything by rule.   

 

6.3.2 DIAGNOSIS DATABASE (UNIQUE 

TRIPLETS) 

The first diagnostic database includes triplet 

mathematical markers wherein each marker is 

unique to a given disorder of the brain, of which 



109 
 

 

there are 26.  Figure 6.16 illustrates 9 of the 26 

disorders.  The central point of each circular 

radiation identifies a disorder, which is 

surrounded by a set of unique markers.  The 

number of markers in a set ranges from three to 

tens of thousands.   

Within this closed environment (called a data 

cage), we can be confident that any 

mathematical marker taken from the diagnosis 

database, relabeled as <unknown>, and run 

against the database will always give the correct 

diagnosis (recall Figure 3.23).  Why?  Because in 

a “caged” database populated with 

mathematical markers unique to each disorder, 

false negatives and false positives do not exist.       

 

Figure 6.16 A data cage designed for the human brain 
includes a collection of twenty-six disorders (only 9 shown 
here) – each of which exists in the figure as a central point 
surrounded by a radial set of unique mathematical 
markers (Original data adapted from Kennedy et al., 2012; 
Adapted from Bolender, 2015).   

 

6.3.3 DIAGNOSIS DATABASE (UNIQUE 

QUADRUPLETS) 

The second diagnostic database replaced the 

triplet markers (ax:by:cz) with quadruplets 

(ax:by:cz:dq).  It produced the same result (see 

Figure 3.21) but used a larger number of 

markers (3,651,770).    

What do these diagnostic databases tell us?  We 

can identify disorders of the brain – quickly and 

easily - by translating clinical data into 

mathematical markers and then use the 

resulting databases to look for objective 

patterns (Figures 3.22 and 3.23; Bolender, 

2008).   

The framework of the relational database does 

all the work for us.  It vets the data for 

uniqueness and can run diagnostic tests by 

challenging the database with unknown 

markers.  Both steps involve running the “find 

duplicates” routine (a SQL script) built into 

Microsoft’s Access Database.  Details and 

worked examples appear elsewhere (Bolender, 

2015; Appendix II)   

What are we learning?  It appears that one of 

the secrets to working in a complex data 

environment, such as those of biology, is to 

design outcomes as equations with R2 ≈ 1 or to 

set the confidence level of predictions (e.g., 

diagnosis) at 100%.  In short, we are learning to 

use biology’s rules to solve our problems.   

 

6.3.4 DIAGNOSIS DATABASE (SHARED 

TRIPLETS) 

Recall that addressing a complex problem 

typically requires reformatting a preexisting 

database as a parallel complexity designed 

specifically to answer the question(s) being 

posed.     

Let’s say we want to study several disorders of 

the brain as a group, instead of just individual 

disorders.  If we go back to the original 

diagnosis database, we can filter its contents 

such that we keep only those markers that have 

duplicates in at least three publications. 
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Shared markers can tell us two things.  First, the 

patterns created by the mathematical markers 

tell us something about how biology produces 

disorders (by identifying duplicated modules) 

and second, how closely one disorder 

resembles another (by applying cluster 

analysis).  In short, duplicate markers allow us 

to probe the phenotype for the causative 

factors underlying the disease process. 

To get a global view of the disease process, we 

can translate the MRI data of the IBVD into a 

composite brain carrying duplicate markers for 

21 different disorders (see Figure 3.24).  Next, 

by parsing this brain stepwise with the 

CommunityGraphPlot from Mathematica, we 

can assemble a relationship tree that identifies 

families of closely related disorders (Figure 

6.17). 

 

Figure 6.17 The graph shows the relationship of clusters to 
disorders in the composite human brain, unfolded as a 
function of shared mathematical markers (From Bolender, 
2015).   

Figure 6.18 compares two approaches to 

diagnosing disorders of the brain. The top panel 

illustrates the subjective approach, whereas the 

bottom one does it objectively with a database 

containing mathematical markers.  Notice that 

the borderline personality disorder shares a 

sizable portion of its markers with 

schizophrenia – the pattern displayed by both 

plots.  The clue that triggered this quantitative 

solution to the diagnosis problem came from 

Figures 3.14 and 3.15.  

  

Figure 6.18 Graph and community plots illustrate the 
extent to which different disorders share similar symptoms 
(Top: subjective) and mathematical markers (Bottom: 
objective); (Original data adapted from Kennedy et al., 
2012; From Bolender, 2015).   

Results collected with the shared triplets 

database point to a modular design as the 

common thread running through all the 

disorders.  Operationally, biology appears to 

have access to a vast collection of building 

blocks that it uses to assemble normal and 

abnormal brains.    

How is this helpful?  If biology is changing 

patterns from normal to abnormal and we can 

detect such patterns with mathematical 

markers, then we know where to begin looking 

for the underlying causes.  At some point, it 

might become possible to map shared 
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symptoms to shared mathematical markers 

(e.g., Figure 6.18). 

 

6.3.5 DIAGNOSIS DATABASE (SHARED 

QUADRUPLETS) 

Figure 6.19 summarizes the frequency 

distributions of duplicates for quadruplet 

markers.  Even when the alphanumeric string of 

the quadruplet marker contains 8 variables 

(ax:by:cz:dq), 21% of the markers in the 

quadruplets database formed duplicates 

globally.  This percentage amounts to more 

than two million diagnostic markers generated 

from the IBVD.  Does this mean that 21% of the 

published data are reproducible?  

Figure 6.19 The distributions of quadruplet markers 

suggest that the brain responds to the disease process by 

changing its connectivity.  In disease, the percentage of 

markers tends to shift from 2 copies per group to 3 and 4.  

Of the 13,360,056 quadruplet markers, 2,802,799 (21%) 

were duplicates (Original data adapted from Kennedy et 

al., 2012; From Bolender, 2014).   

Notice in Figure 6.19 that the percentage 

columns at the right identify a prominent shift 

in the frequency distribution of the duplicate 

groups from 2 copies to 3 and 4 copies.  This 

suggests that the disease process brings about 

an increase in connectivity.  [Recall the local 

finding of Figure 3.8.]  

By comparison, the triplet database included 

381,476 duplicate markers (Bolender, 2014) - , 

representing 47.2% of the total population.  A 

database derived from the biology literature 

that contains as many as 64 copies of the same 

mathematical marker offers a compelling 

argument for the presence of reproducibility in 

biology and in published research data.  At least 

the possibility now exists that we may be better 

at our job than some might lead us to believe 

(Baker, 2016; Pellizzari et al., 2017).         
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CHAPTER 7 

CALCULATIONS 
 

Solving biology includes a team effort involving 

data, rules, mathematics, and technology.  

Typically, calculations span several steps and 

technologies, which include databases, 

spreadsheets, equations, programming, and 

software packages.  The goal of this chapter is 

to illustrate the range of the calculations used 

to extract and reinterpret published data.  

Worked examples - explained in greater detail - 

accompany the yearly reports and can be found 

online.  

 

7.1 COLLECTING DATA 

 

7.1.1 CALCULATOR PROGRAM 

Solving biology begins with the biology 

literature.  After identifying a paper of interest, 

the first step consists of organizing the data into 

a table that corresponds to the work flow of the 

data entry screens in the database.  This speeds 

data entry and minimizes errors.  

Unfortunately, many authors prefer graphs over 

data tables when reporting their results. 

Herein lies a problem.  Graphs come in many 

different forms and figuring out how to extract 

numbers from points and lines quickly becomes 

a frustrating task.  A workable solution to this 

problem appears in Figure 7.1, wherein a 

program offers a general solution to the data 

conversion problem.  By following the 

directions given on the calculator screen, the 

data conversion process becomes a routine 

operation.  [A helpful hint: An enlarged 

photocopy of a published graph makes it easier 

to measure distances and to keep track of the 

numerical values.] 

The equation for making the conversion is as 

follows: 

𝑦 𝑣𝑎𝑙𝑢𝑒 = (((𝑦_𝑡𝑜𝑝 × 𝑦_𝑙𝑒𝑛𝑔𝑡ℎ)/

 (𝑦_𝑢𝑛𝑖𝑡𝑠)) − 𝑦_𝑓𝑟𝑜𝑚_𝑡𝑜𝑝) × (𝑦_𝑡𝑜𝑝/

((𝑦_𝑡𝑜𝑝 × 𝑦_𝑙𝑒𝑛𝑔𝑡ℎ)/(𝑦_𝑢𝑛𝑖𝑡𝑠 ))))  (7.1) 

For example, when: 

𝑦𝑡𝑜𝑝 = 250 𝑚𝑚  

𝑦𝑙𝑒𝑛𝑔𝑡ℎ = 90 𝑚𝑚  

𝑦_𝑢𝑛𝑖𝑡𝑠 = 250 𝑚𝑚 

𝑦_𝑓𝑟𝑜𝑚_𝑡𝑜𝑝 = 76.4 𝑚𝑚 

 

𝒚 𝒗𝒂𝒍𝒖𝒆 = 𝟑𝟕. 𝟕𝟕𝟕𝟖 

 
 
Figure 7.1 Since many publications report data exclusively 
as graphics, a work screen simplifies the task of translating 
graphical data back into numerical values (From Bolender, 
2001a). 
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7.2 LEVEL 1 – PATTERNS 

 

 

7.2.1 CONCENTRATION TRAP 

It’s easy to imagine that once we acknowledge 

something to be true in one setting, that it must 

also be true in other settings.  Sometimes this 

works, other times not.   Consider, for example, 

chemistry and biochemistry.  Although it’s 

perfectly acceptable in chemistry to detect 

changes in molecules by comparing 

concentrations, the same permission does not 

extend to biochemistry when our goal is to 

interpret molecular changes as biological 

changes.   

Why?  A chemical change uses a constant data 

reference (e.g., 1 ml of volume) to detect a 

change, whereas a biochemical change related 

to cells uses a variable data reference (e.g. the 

contents of 1 ml of volume) to detect a change.  

This means that each type of chemistry comes 

with its own set of rules.  Ignoring such rules, 

which happens routinely, introduces chaos into 

the literature and leads to unfortunate 

consequences such as the ongoing 

reproducibility crisis.            

Consider the challenge we face.  In designing an 

experiment in biology, we adhere to a simplified 

methodology (reductionism), but interpreting 

results requires that we evaluate our findings 

within the complex reality of biology.  In effect, 

we find ourselves operating within a research 

model filled with inconsistencies.  The 

unfortunate consequence of this mismatch 

between theory and practice is that we 

unwittingly fall into traps of interpretation.        

All too often, a change in the same part (A) 

gives one result as a concentration (A/reference 

volume), but quite a different one when 

expressed as an absolute value (A).  Let’s see 

how and why this happens. 

Concentration Data 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑐𝑜) = 𝐴𝑐𝑜/𝑉𝑐𝑜_𝑟𝑒𝑓  (7.2) 

𝑒𝑥𝑝𝑡𝑙(𝑒𝑥) = 𝐴𝑒𝑥/𝑉𝑒𝑥_𝑟𝑒𝑓  (7.3) 

Change in Concentration 

𝑒𝑥𝑝𝑡𝑙(𝑒𝑥)

𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑐𝑜)
= (𝐴𝑒𝑥/𝑉𝑒𝑥𝑟𝑒𝑓

)/(𝐴𝑐𝑜/𝑉𝑐𝑜𝑟𝑒𝑓
) (7.4) 

Outcome 1: If 𝑉𝑒𝑥_𝑟𝑒𝑓 = 𝑉𝑐𝑜_𝑟𝑒𝑓, the reference 

volumes cancel out and the result is 

interpretable: 

𝑒𝑥𝑝𝑡𝑙(𝑒𝑥)

𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑐𝑜)
= (𝐴𝑒𝑥)/(𝐴𝑐𝑜)  (7.5) 

Outcome 2: If 𝑉𝑒𝑥_𝑟𝑒𝑓 ≠ 𝑉𝑐𝑜_𝑟𝑒𝑓 the reference 

volumes do not cancel out and the result is 

uninterpretable. 

𝑒𝑥𝑝𝑡𝑙(𝑒𝑥)

𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑐𝑜)
= (𝐴𝑒𝑥/𝑉𝑒𝑥𝑟𝑒𝑓

)/(𝐴𝑐𝑜/𝑉𝑐𝑜𝑟𝑒𝑓
) (7.6) 

How often does Outcome 1 occur?  According 

to the concentration trap database (Figure 6.5), 

concentration data (Outcome 1) agree with 

their absolute data counterparts only about 

50% of the time.  This tells us that that we can 

expect morphological and biochemical data to 

fall routinely into concentration traps.  Indeed, 

they do (Figures 6.5 and 7.30)        

The key to getting our arms around a biological 

complexity such as a change begins with the 

understanding that biological variables (read 

parts and connections) are interconnected and 

interdependent.  In biology, nothing acts alone.  

Simulators can help to explain why this is the 

case.   
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7.2.2 BLACK BOX SIMULATOR 

By taking biology apart to study it, we not only 

dumb-down biology by destroying its 

complexity, but we’re also cutting off our access 

to biology’s rules.  This makes it difficult to play 

biology’s game and even harder to win.   

Let’s begin by considering the sources of the 

contradictory results detected by the 

concentration trap by identifying some of the 

rules in play.  To this end, we can return to the 

calculation work screens of the Counting 

Molecules simulator (Figure 7.2) introduced 

earlier (Figure 6.6).  

 

Figure 7.2 The Counting Molecules simulator introduces 

the beginner to the risks of interpreting biological data 

taken out of context (From Bolender, 2005).  

Next, let’s do an experiment using the standard 

black box approach wherein we compare the 

concentrations of a molecule estimated in an 

organ before (contl) and after (exptl) exposure 

to a hypothetical toxin.  We can see in Figure 

7.3 that the concentration of the molecules 

increased by 39%, a change large enough to 

detect as a significant difference.  Most readers 

seeing such a result would support the author’s 

conclusion that the number of molecules 

increased.   

 

Figure 7.3 A biological change is the product of many 

interacting variables, not just one.  By comparing just 

concentrations, detecting a biological change has roughly 

a 50-50 chance of being correct (From Bolender, 2005). 

Given the black box design of the experiment in 

Figure 7.3, can we safely conclude that the toxin 

increased the number of molecules?  No.  Did 

the study detect an increase in the 

concentration of the molecules?  Yes.  Did the 

number of molecules increase?  No.   

What happened?  When we open the black box 

(shown in Figure 7.3 as a gray overlay) and look 

inside, we can see what our imaginary toxin did 

to the cells (Figure 7.4).  

 

Figure 7.4 Molecular changes embedded in biological 

complexity.  Highlights identify the change: red = increase, 

blue = decrease, and green = no change.  From Bolender, 

2005).     
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The toxin: 

• Had no effect on the number of molecules 

in an average cell. 

• Killed 100,000 cells. 

• Decreased the average cell volume by 20%. 

• Moved 5,000 extra cells into a cm3 of cells. 

• Moved 38,889 extra molecules to a cm3 of 

cells. 

• Increased the concentration of the 

molecules in a cm3 of cells by 39%. 

What do the results of the simulation in Figures 

7.3 and 7.4 tell us?  It’s often impossible to 

interpret biochemical results correctly without 

including complexity.  The concentration data 

(without complexity) detected a 39% increase in 

the number of molecules that didn’t happen 

and missed the fact that the toxin killed 100,000 

cells per cm3 of tissue.  In short, an over-

simplified approach to biology can be hazardous 

to both cells and researchers.       

Unfortunately, the results shown in Figures 7.3 

and 7.4 only begin to hint at the calamities put 

into play by ignoring the complexity of a 

biological change.  A simulator helps us to 

understand the nature of complexity by keeping 

track of multiple variables and showing us what 

can happen as we vary one or more of the 

variables at a time.   

Avoiding complexity puts the very science of 

biology at risk.  Detecting a biological change 

correctly is so tricky that the results of only 20-

30% of refereed publications in the biology 

literature are now believed to be correct (e.g., 

Ioannidis, 2005).   

 

7.2.3 REPERTOIRE EQUATIONS 

A repertoire equation defines the relationship 

of two sets of parts (𝑥, 𝑦) such that the slope (b) 

and the R2 of a power curve (𝑦 = 𝑎𝑥𝑏) both 

approach 1.0.  Recall that a power curve with a 

slope of 1 becomes a linear curve. 

Figure 7.5 plots organelles against the 

endoplasmic reticulum (er) with data coming 

from 16 papers.  The resulting repertoire 

equation is given as:  

𝑌 = 0.4549𝑋1.00156, with an R2 = 0.999.   (7.7) 

 

Figure 7.5 A high degree of order can exist in the 

relationship of the endoplasmic reticulum to other cell 

organelles.  The figure shows that diverse organelles 

coming from different publications can occur in the same 

proportion with the endoplasmic reticulum (From 

Bolender, 2004).  

Recall that repertoire equations provided an 

important early clue by showing that global 

order could be found in the biology literature.  

They did this largely by detecting an underlying 

order defined by ratios.  

 

7.2.4 DECIMAL REPERTOIRE EQUATIONS 

Although repertoire equations (derived from 

data pair ratios) uncovered previously 

undetectable patterns, they became increasing 

unwieldy because they lacked distinct 

boundaries between adjacent patterns.  This 

limitation created challenges of interpretation 

when filtering and sorting large database tables.     

The problem was resolved by assigning the data 

pair ratios to distinct decimal bins, which were 

determined by calculating regression equations 
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for the data contained within each bin.  The 

decimal steps were chosen such that the 

regressions predicted the published values with 

a maximum error of no more than ±15% - the 

typical error associated with stereological 

estimates.  The decimal steps ranged from 

0.0001 to 100,000.  By switching to a decimal 

format, the data pairs (and subsequently 

triplets and quadruplets) displayed distinct 

boundaries, which facilitated the filtering, 

sorting, and pattern recognition routines.   

The universal biology database table in Figure 

7.6 lists a collection of data pairs along with a 

measure of the effectiveness of the repertoire 

equations in predicting the original values 

expressed as a percentage.  When we compare 

the observed values for y to the expected 

values, most closely agree with only about 50 

(0.1%) of the 50,000 predictions falling outside 

the ±15% interval.  

 

Figure 7.6 The data pair table includes ratios (y/x), ratios, 

repertoire equations, and an assessment of how close the 

equations predict the original ratios (see the yellow 

column); From Bolender, 2005.   

By attaching each data pair ratio (y/x) to a 

decimal repertoire equation, for example, 

patterns previously hidden in amorphous clouds 

of data become detectable.  Figure 7.7, for 

example, shows how a cloud of points (Before) 

quickly resolves into 14 decimal repertoire 

equations with R2s > 0.9 (After). 

 

 

Figure 7.7 Before: Cell counts plotted from the lateral 

geniculate nucleus of the brain showed a single data cloud 

with little indication of order.   After: The data cloud 

unfolded into 14 decimal repertoire equations with R2s > 

0.9.  Decimal repertoire equations proved to be effective in 

distinguishing between closely related phenotypes 

quantitatively.  Notice how the curves all point toward the 

origin, which tells us that biology likes to use the same 

ratios repeatedly (Original data adapted from Seecharan 

et al. 2003; From Bolender, 2005).   

Figure 7.7 offers a key insight.  In 58 isogenic 

strains of mice, the equations show that there 

are at least 14 ways to design a lateral 

geniculate nucleus – given the frequencies of 

three cell types (neurons, glial cells, and 

endothelial cells).   

What does this tell us?  Since most of the 

genetic modifications in the Seecharan study 

did not target genes related to the nervous 

system, these results suggest that making 

changes to the DNA - anywhere in the genome - 

can have unintended consequences at the level 

of the organism.   

With genomes routinely being modified, we can 

expect to see such patterns of unintended 

consequences occurring elsewhere.  Changing 
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battle-tested sequences in the genome – in the 

absence of broadly-based feedback from the 

phenotype – may end up producing more 

problems than it solves.      

 

7.2.5 GROWTH PATTERNS 

Patterns often undetected with standard 

methods of analysis become visible when 

expressed as decimal repertoire values (DRV). 

Figure 7.8, for example, uses such values to 

chart the development of the adrenal gland in 

the rat.  Notice that the same patterns in the 

ratio of parts (yellow=yellow, green=green) 

appear, disappear, and reappear as the adrenal 

develops.   

 

Figure 7.8 Development of the adrenal gland displays 

repeating patterns (yellow, green) over time (left to right) 

(Original data adapted from Nikicicz et al., 1984; From 

Bolender, 2008).   

Figure 7.9, which shows the effect of ACTH on 

the development of the hamster adrenal, also 

detects repeating patterns (yellow = yellow, 

green = green); DRV = decimal repertoire value. 

 

Figure 7.9 Notice that the response of the adrenal to ACTH 
during development once again shows repeating patterns 
(yellow, green) over time (Original data adapted from 
Malendowicz, 1986; From Bolender, 2008). 

In both cases, ratios of parts, but not the 

individual parts, detected the repeating growth 

patterns.   

 

7.2.6 TRIPLET MARKERS (WORKED EXAMPLE) 

Recall that mathematical markers represent an 

alpha-numeric string (ax:by:cz), which, for 

example, can consist of three named parts (e.g., 

a, b, c) with their corresponding numerical 

values given as ratios (x:y:z).  The names may 

refer to any biological part and the numerical 

values typically characterize a volume, surface, 

length, or number.  For the following worked 

example, the data set will consist of four named 

parts (a to d) and four volumes (5 to 20) – as 

shown in Figure 7.10. 

Part Volume 

a 5 

b 9 

c 12 

d 20 

Figure 7.10 The data set associates 4 parts with 4 volumes. 

The permutations program of Mathematica 

takes four parts (a, b, c, d) three at a time {3} to 

generate twenty-four triplets (Figure 7.11).   
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Figure 7.11 Four parts taken 3 at a time yield 24 triplets 
(4 × 3 × 2 = 24). 

In the next step (Figure 7.12), we copy these 

letter triplets and paste them into an Excel 

calculation template (columns D, E, F).  In turn, 

we copy their numerical values from the Excel 

worksheet shown at the top to the one below: 

column B (top) to column H (bottom) as shown.  

Since column D contains the same names as 

columns E and F, the numerical values are also 

the same, but in a different order.  By copying 

column x and storing it on an adjacent 

worksheet, we can fill columns I and J by 

copying and pasting all the stored values for a 

given column together.  To do this, highlight the 

entire bottom screen and select custom sort.  

Next, sort (ascending) on column E, copy the 

stored values, and paste them in column I.  The 

procedure is repeated for columns F and J.  

Notice that the repertoire ratios (columns K, L, 

M) appear automatically in the Excel template 

after entering the volumes.  To view the 

calculation in the heading of the worksheet, 

highlight a value in the table.   

 

Figure 7.12 The two worksheets summarize the process of 
translating parts and ratios into triplet mathematical 
markers.  Enlarge as needed.  Such template worksheets 
are available online. 

The last step consists of translating the 

repertoire values (raw data) into decimal 

repertoire values using a lookup table (Figure 

7.13) and the raw ratios listed in columns x, y, 

and z (Figure 7.12). 

 

Figure 7.13 Decimal repertoire values use 101 bins to store 
the published data (From Bolender, 2017).  A value (x), for 
example, would be assigned to the 5 bin when x ≥ 5 and < 
6. 

This concluding step of data entry begins by 

sorting (the entire table) on the L column and 

entering the decimal values into column O (see 

Figure 7.12).  When finished, column O is copied 

and saved on an adjacent worksheet.  Finally, 
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sort the entire table on column M, copy the 

saved data of column O, and paste it into 

column P. 

Why use such a complicated procedure?  Since 

a paper with 15 parts generates 40,950 markers 

for a given time point, using the copying and 

pasting routines speeds the process and 

minimizes errors.   

A final note.  When dealing with large data sets 

in Excel (>1.2x106 rows), generating the triplets 

or quadruplets requires shuttling data between 

various programs and figuring out how to get 

the programs to do what needs to be done.  

The appendix attached to the 2016 report 

(Bolender, 2016a) includes a worked example 

with additional suggestions that may be helpful. 

Figure 7.14, for example, shows a calculation 

template designed to generate triplet markers.  

To make it legible, the template is displayed in 

two parts – left (top) and right (bottom).   

 

Figure 7.14 Triplets were produced using a worksheet 
template.  The concatenate function - CONCATENATE 
(C2,N2,D2,O2,E2,P2) generates the mathematical markers 
automatically.  The lookup sheet (Figure 7.13) was used to 
translate the repertoire ratios (K,L,M) into decimal ratios 
(N,O,P); (From Bolender, 2017). 

In effect, this template-based procedure speeds 

the task of translating the data of standalone 

research papers into a single, universal biology 

database populated with highly interactive 

mathematical markers. 

7.3 LEVEL 2 – BIOCHEMICAL 

HOMOGENEITY 

 

 

Biochemical homogeneity, which defines a 

relationship of structure to function 

mathematically, allows us to predict 

morphology from biochemistry and vice versa.  

Calculation modules, such as those shown in 

Figure 7.15, predict both morphology and 

biochemistry.  The file illustrated in the figure 

(1_biochem-ical_homogeneity.xlsx) is available 

online as an attachment to the 2017 progress 

report.    

 

Figure 7.15 The worksheet converts units of marker 
enzyme activities to ER surface areas (m2) and ER surface 
areas to units (U) of enzyme activities – for hepatocytes.  
The two prediction stacks evaluate the equations 
automatically (Original data adapted from Bolender et al., 
1978, Losa et al., 1978, and Bolender et al., 1980; From 
Bolender, 2017).   
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Recall that biochemical homogeneity is being 

expressed as the:  

Structure-Function Rule 

𝒇(𝒙) = 𝒎𝒙 .    (7.8) 

The equations used in the worksheets of Figure 

7.15 are not playing the usual biological 

variation game.  Instead, they are applying the 

rules under which biology allows variation to 

exist.  We can write these equations because 

the ratios of the parts are highly conserved 

within and across species when they carry the 

same rules and instructions (genes).  This reality 

can be used to our advantage by using 

equations to predict phenotypic expression 

upstream where we expect to encounter and 

connect to the rules being orchestrated by the 

genome.  

 

7.3.1 PREDICTING MORPHOLOGY FROM 

MORPHOLOGY 

In a control setting, for example, membrane 

organelles, occur in ratios specific to a given cell 

type.  [Recall figures 3.7 and 3.8.]  

Ratio Chain Rule (Morphology) 

𝒎𝟏: 𝒎𝟐: 𝒎𝟑, … , 𝒎𝒏    (7.9)  

When applied to organelle surface areas: 

𝑠1: 𝑠2: 𝑠3, … , 𝑠𝑛  ,   (7.10) 

the rule is expressed relative to the first item in 

the series: 

𝑠1

𝑠1
:

𝑠2

𝑠1
:

𝑠3

𝑠1
: , … ,

𝑠𝑛

𝑠1
  .         (7.11) 

We can simplify the notation of Ratio 7.11 as 

follows: 

𝑠′1: 𝑠′2: 𝑠′3: , … , 𝑠′𝑛 .   (7.12) 

By setting the first ratio in the series (chain) 

equal to 1 (𝑠′1/𝑠′1), a change made to this value 

can be applied to all the remaining items in the 

chain.  Any member of the chain can become 

the first ratio.   

The calculation worksheet generates the 

calculations automatically (Figure 7.16).  

Entering a seed value (into the first item in the 

chain ratio) equal to 4.6 m2, would result in the 

following calculation: 

4.6′1: 4.6 × 𝑠′2: 4.6 × 𝑠′3: , … , 4.6 × 𝑠′𝑛 .  (7.13) 

Enter this value (4.6 m2 of ER/gram of liver) into 

the space provided in the worksheet (Figure 

7.16) and Excel calculates values for the 

remaining hepatocytic organelles listed in the 

membrane column.  When the goal is diagnosis 

or prediction, these predicted values can be 

converted into mathematical markers and used 

as described in Chapter 4. 

Figure 7.16 identifies unanswered questions of 

considerable interest.  If a pattern exists across 

the morphology of the controls, how does the 

genome change this pattern when it’s called 

upon to adapt?  Why and how do parts change 

at different rates?  

 

Figure 7.16 In control cells, organelles can exist in well-
defined proportions.  Consequently, a panel of cell 
organelles can be predicted from a single estimate – e.g., 
when the surface of the er = 4.6 m2, the ser = 1.767 m2, et 
cetera (From Bolender, 2017).   
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Biology’s structural design, which relies heavily 

on ratios, scales up and down the hierarchy of 

size.  The liver, for example, contains four 

parenchymal cell types, wherein each cell 

displays organelles in proportions specific to its 

phenotype.  In turn, intra- and intercellular 

proportions of organelles – along with the cell 

frequencies - define the phenotype of the cells 

making up the liver parenchyma.  This pattern – 

defined by ratios – allows us to predict cellular 

events in the control liver parenchyma triggered 

by data coming from a single membrane surface 

area or marker enzyme activity (Figure 7.17).  

[Note that the membrane organelles being used 

in the figures were corrected for the section 

related biases.]    

 

Figure 7.17 Predicting the surface areas of organelles in 
the cells populating the liver parenchyma (Original data 
adapted from Blouin eta al., 1977; From Bolender, 2017).  
Since biology arranges its cells and tissues by rule, we can 
use these rules - expressed as equations – to make 
predictions. 

 

7.3.2 PREDICTING BIOCHEMISTRY FROM 

BIOCHEMISTRY 

In a control setting, enzyme activities in 

hepatocytes display distinct relationships, which 

define ratios.  Consequently, a string of ratios 

becomes predictive (Figure 7.18).   

Ratio Chain Rule (Biochemistry) 

𝒃𝟏: 𝒃𝟐: 𝒃𝟑, … , 𝒃𝒏   (7.14) 

When applied to units of enzyme activity: 

𝑢1: 𝑢2: 𝑢3, … , 𝑢𝑛  ,   (7.15) 

the rule is expressed relative to the first item in 

the series: 

𝑢1

𝑢1
:

𝑢2

𝑢1
:

𝑢3

𝑢1
: , … ,

𝑢𝑛

𝑢1
    (7.16) 

Note that units of activity are related to a 

standardized mg of protein reference before 

assembling the ratios (Bolender, 2017).  This is 

necessary because the mg protein reference 

behaves as a variable, being influenced by both 

biological and methodological variation.  

Standardization of enzyme assays may also be 

required (Figure 7.44).    

Figure 7.18 uses published data (Amar-Costesec 

et al., 1974) to generate ratios that predict 

enzyme activities for 21 connected marker 

enzymes from a single control value. 

5’nucleotidase, a marker enzyme for the plasma 

membrane of hepatocytes, serves as the 

example in the worksheet. 

Notice how we can deal with the biological 

variability, which comes from the practice of 

relating enzyme activity to a mg of protein or 

gram of liver.  Variability across animals and 

publications is minimized by using ratios of one 

activity to another instead of comparing 

concentrations.  Variability coming from the 

data reference – the variable in the 

denominator – cancels out algebraically. 
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Figure 7.18 The column at the right uses a control value 
(Enter x = 1) for a plasma membrane marker enzyme 
(5’nucleotidase) to predict the corresponding values for the 
enzymes listed at the left (Original data adapted from 
Amar-Costesec et al., 1974; From Bolender, 2017).  

The point being made with these calculation 

worksheets (Figures 7.16 to 7.18) is that the 

structures and functions of cells and tissues 

follow exacting rules that produce distinct and 

reproducible patterns that collectively define 

phenotypes quantitatively.  Recall that we first 

detected these patterns with organism codes 

(Figures 3.7 and 3.8).  That observation 

provided a clue that led to the chain rules. 

In experimental settings, this approach could be 

used to check for duplicate or missing genes, to 

monitor genetic regulation, to estimate rates of 

synthesis (rate constants), and to reconstruct 

metabolic tables for a host of phenotypic 

responses. 

 

7.4 LEVEL 3 – ORGANELLE CHANGES 

 

 

7.4.1 DETECTING CHANGES – SEPARATELY 

AND TOGETHER 

In the sciences, theory structure becomes the 

defining driver of discovery.  Under reductionist 

theory, we take biology apart and then 

characterize the remaining parts 

morphologically and biochemically.  When we 

plot changes in morphology versus 

biochemistry, however, the results can be 

disappointing – the R2 = 1 or R2 ≈1 equations fail 

to appear.  If, instead, we put biology back 

together within the framework of complexity 

theory, we get the R2 = 1 and R2 ≈1 equations.  

Although we take biology apart physically, we 

put it back together mathematically – according 

to biology’s rules.   

 

7.4.1.1 Morphology 

Consider liver hepatocytes.  Stereological 

estimates of ER membrane surface areas, for 

example, detect changes (increases and 

decreases) in response to phenobarbital 

treatment.  Figure 7.19 indicates that following 

the initial increase, the ER shows little change 

and even suggests a slight decrease when 

related to a gram of liver.  Although the 

hepatocytes are filling up with ER membranes 

designed to metabolize the drug, we can’t 

detect this increase because each day we are 

slowing sliding - deeper and deeper - into the 

concentration trap wherein fewer and fewer 

hepatocytes are needed to fill up a gram (or 

cm3) of liver.  Fewer cells means less membrane 

surface area per gram of liver.  Figure 7.19 

illustrates the regrettable outcome of this black 

box approach to detecting a biological change.    
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S/g liver 
   

days er/g ser/g rer/g 

0 8.65 2.96 5.80 

0.67 11.61 4.68 6.94 

2 11.97 5.20 6.40 

5 11.14 5.83 4.73 

 

Figure 7.19 ER surface areas of hepatocytes estimated 
stereologically and related to a gram of liver (Original data 
adapted from Stäubli et al., 1969); From Bolender, 2018). 

 

7.4.1.2 Biochemistry 

Notice in Figure 7.20 that the biochemical 

measures of two out of three membrane bound 

marker enzymes clearly increase in response to 

phenobarbital exposure.  However, the slopes 

of the enzyme activity curves are diminished 

because of the diluting effect of the diminishing 

numbers of hepatocytes contained within a 

gram of liver.  Both the morphological and 

biochemical data inevitably fall into the same 

concentration trap, but it’s harder to see 

biochemically because the enzyme activities are 

increasing faster than the ER membranes and 

faster than the loss of activity attributed to 

hepatocytes exiting the gram of liver.     

 

 

 

 

 

 

enz/g liver 
  

days cytoc p450/g n-demeth/g nadph-ccr/g 

0 9.2825 1.7443 0.0990 

0.67 13.9900 6.0097 0.0992 

2 21.0447 8.0224 0.1154 

5 33.7658 12.7447 0.1772 

 

Figure 7.20 Enzyme activities of hepatocytes estimated 
biochemically (Original data adapted from Stäubli et al., 
1969); From Bolender, 2018).  

Trying to do biochemistry without morphology 

or vice versa, comes with the risk of having to 

connect single, isolated pieces of information to 

the constantly shifting complexity of a biological 

change. 

 

7.4.1.3 Morphology vs. Biochemistry 

If we combine the data of Figures 7.19 and 7.20 

to look for relationships of structure to function 

(i.e., plot ER surface areas against marker 

enzyme activities), we get disappointing results 

with R2s = 0.48 and 0.54 (Figure 7.21).  Now our 

analysis suggests that both enzymes 

(cytochrome P450 and n-demethylase) also 

appear to be decreasing in response to 

phenobarbital.  Such results tell us that this is 

not the way to find a rule that defines the 

relationship of structure to function in cells. 
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Figure 7.21 ER surface areas plotted against marker 
enzyme activities fail to detect a crisp quantitative 
relationship (Original data adapted from Stäubli et al., 
1969). 

By operating under the constraints of a weak 

theory structure (reductionism), we are left 

with the task of dealing with the consequences 

of the results. 

 

7.4.1.4 Structure-Function Rules 

If, however, we relate each experimental time 

point listed in Figure 7.20 to 1 m2 of ER surface 

area by calculating enzyme densities, then the 

resulting points fit linear regressions, deliver the 

expected R2s, and we can see the expression of 

biology’s structure-function change rule – one 

for each membrane-enzyme combination 

(Figure 7.22). 

By switching to complexity, we can discover 

how hepatocytes respond to phenobarbital by 

changing the relationship of structure to 

function in their ER membranes.  Since biology 

manages its structural and functional responses 

to the drug holistically, it increases both the 

concentration of its marker enzymes per unit of 

ER surface area (shown in Figure 7.22) and the 

amount of ER membrane in its hepatocytes 

(shown in Figure 5.4 and 7.31).   

Here we see a biological complexity expressed 

as an adaptive response operating locally to 

increase the concentration of a membrane-

bound enzyme and globally as an increase in 

the total amount of hepatocytic ER membrane 

in its parent organ - the liver. 

In this experiment, biology used two 

mechanisms (sets of rules) to increase the 

capacity of its drug metabolizing enzymes.  

However, this represents only one part of the 

much larger story of change.  Biology also has 

rules for determining the rate at which the 

induced (and non-induced) enzymes are added 

to the ER membranes and for setting the 

turnover rates of the preexisting control 

membranes (Bolender and Weibel, 1973).  
 

ED ED ED 
days nadph-ccr/S(er) cytoc p450/S(er) n-demeth/S(er) 

0 0.0114  1.0731 0.2017  
0.67 0.0085 1.2054 0.5178 

2 0.0096 1.7580 0.6702 

5 0.0159 3.0319 1.1444 

 

Figure 7.22 Local modifications to membranes represent 
complex events, which biology defines as distinct 
relationships of structure to function (Original data 
adapted from Stäubli et al., 1969); From Bolender, 2018).  
Notice that biology defines its relationship of structure to 
function with ratios (EDs).  
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7.4.1.5 States: Steady (Co) → 

Transitional → Steady (Ex) 

Recall that the change model introduced in 

Figure 1.1 included two steady states (control 

and experimental) separated by a transitional 

state (change).  Figure 7.22, which characterizes 

a transitional state, displays persistent increases 

in three enzyme densities with distinctly 

different slopes (rate constants) in response to 

the drug phenobarbital.  A new steady state (Ex) 

appears to be nowhere in sight.  However, 

ratios characterizing the enzyme densities at 

days 0 (Co) and PB days 2, 5 (Ex) are distinctly 

different (Figure 7.23).  That’s a clue.     

 

7.4.2 ENZYME DENSITY RATIOS 

In biology, quantitative patterns – expressed as 

ratios - seem to exist everywhere.  For example, 

the enzyme density ratios of two different 

marker enzymes induced by phenobarbital 

change momentarily and then establish a new 

steady state relationship (Figure 7.23).   

days ED 1-2 ED 1-3 ED 2-3 

0 5.321622 0.937619 0.17619 

0.67 2.327928 141.007 60.57189 

2 2.62322 182.2991 69.49441 

5 2.649411 190.5576 71.92454 

 

Figure 7.23 The relative amounts (ratios) of cytochrome 
P450, n-demethylase, and NADPH cytochrome c reductase 
change in response to phenobarbital. ED 1-2: n-
demethylase vs cytochrome P450; ED 1-3: NADPHCCR vs 
cytochrome P450; ED 2-3: NADPHCCR vs n-demethylase 
(Original data adapted from Stäubli et al., 1969); From 
Bolender, 2018).  

This tells us that hepatocytes respond to 

phenobarbital by reprogramming the 

relationship of one ER marker enzyme to 

another.  In other words, the membrane recipe 

changes.  This means that a change in the ER 

involves two complex modifications – 

adaptation (new ED packing ratios) and 

production (more ER).   

 

7.4.3 TRANSITIONAL STATE 

The transitional state represents a time during 

which major changes occur.  It’s a seemingly 

chaotic period when many variables change at 

different rates across multiple levels of 

complexity.   

During the transition, the control recipe for the 

ER membranes is being gradually replaced by a 

new one designed to eliminate the 

phenobarbital.  What’s the new recipe and how 

do we detect and characterize it?     

 

7.4.3.1 Looking for the New Recipe 

In response to phenobarbital exposure, 

hepatocytes change the steady state of its ER 

enzyme densities from control to experimental 

(PB), as shown in (Figure 7.24).  After five days 

of exposure to the drug, the cells roughly 

doubled, for example, the relative amount of n-

demethylase activity associated with a square 

meter of ER membrane (Figure 7.24). 

 

Figure 7.24 The two equations identify steady states before 
(control) and after exposure to phenobarbital (PB).  The PB 
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curve uses data taken from Figure 7.22 (Original data 
adapted from Stäubli et al., 1969). 

Since the enzyme density curves for n-

demethylase and cytochrome P450 are 

increasing at different rates (Figure 7.22), how 

do we show that a new steady state (PB) exists 

for these two enzymes between PB days 2 and 

5?  In other words, how does biology embed a 

steady state (Figure 7.23) into a transitional 

state (Figure 7.22)?  Is this a hard question?  No.   

We need do little more than watch biology 

doing its job.  We know that an enzyme density 

adheres to the structure-function rule (𝑓(𝑥) =

𝑚𝑥) at each experimental time point.  By 

plotting one enzyme density against another 

(Figure 7.25), we can expect to get change 

equations (𝑓(𝑥) = 𝑚𝑥 + 𝑏) – (top and middle 

panels) – until the new recipe is established 

(𝑓(𝑥) = 𝑚𝑥) – (bottom panel).  The change 

equations (top and middle panels) miss the 

origin, whereas the bottom one (day 2 to day 5) 

passes through it.  This tells us that at days 2 to 

5 the enzyme densities of n-demethylase and 

cytochrome P450 are no longer changing 

relative to each other and have established a 

new steady state (bottom).  This signals yet 

another interpretation of our general structure-

function rule: 

Recipe Detection Rule: 

𝒇(𝒙) = 𝒎𝒙 , where 𝒎 = 𝑬𝑫𝒊/𝑬𝑫𝒋 , (7.17) 

and i and j identify two different enzyme 

densities (ED).  For phenobarbital exposure 

(PB Day 2 and 5):  

𝑦 = 0.3784𝑥     (7.18) 

and the line passes through origin (Figure 

7.25).  This result indicates that a new and 

stable relationship exists between n-

demethylase and cytochrome P450, wherein 

the relative amount of n-demethylase increased 

100% compared to the control (Figure 7.24). 

 

Figure 7.25 Biology adapts to phenobarbital exposure by 
changing hepatocytic relationships of structure to function 
according to its rule-based recipe for metabolizing the drug 
(Original data adapted from Stäubli et al., 1969).  

Within two days, hepatocytes were able to 

recognize the phenobarbital threat, figure out 

how to respond, and apply a solution that 

included making changes to their ER 

membranes - both in their molecular 

composition and amount.  Figures 7.22 and 7.25 

identify the transitional stage of a membrane 

change as a two-part process: dynamic 

(transition) and dynamic equilibrium (steady 

state).   

The complexity of this membrane change 

encourages speculation.  Certain disorders 



127 
 

 

might be explained by an inability of cells to 

establish a steady state wherein they remain 

trapped in the limbo of a transitional zone.  

Such a scenario might help to explain the large 

numbers of abnormal mathematical markers 

associated with the disease process (see, for 

example, Figures 3.25 and 4.14).     

 

7.4.3.3 Finding the Recipe Rule 

The enzyme densities define a membrane 

recipe as a ratio of multiple marker enzyme 

activities.  Moreover, these ratios, which define 

recipe rules, can be translated into 

mathematical markers and used to detect 

specific responses to specific exposures.   

Recipe Rule 

𝒂(𝑬𝑫𝟏): 𝒃(𝑬𝑫𝟐): 𝒄(𝑬𝑫𝟑) … 𝒙(𝑬𝑫𝒏) (7.19) 
 
For the phenobarbital study, we can use the 

EDs of the control and experimental steady 

states (Figure 7.22) to identify the change in the 

recipe:  

Steady State (Co)  

 
𝑑𝑒𝑚𝐸𝑅(𝐸𝐷1): 𝑐𝑦450𝐸𝑅(𝐸𝐷2): 𝑛𝑎𝑑𝑝ℎ𝑐𝑐𝑟𝐸𝑅(𝐸𝐷3)(7.20) 

𝐝𝐞𝐦𝐄𝐑𝟎. 𝟐: 𝐜𝐲𝟒𝟓𝟎𝐄𝐑𝟏. 𝟏: 𝐧𝐚𝐝𝐩𝐡𝐜𝐜𝐫𝐄𝐑𝟎. 𝟎𝟏𝟏 

 

Steady State (Ex)  

 
𝑑𝑒𝑚𝐸𝑅(𝐸𝐷1): 𝑐𝑦450𝐸𝑅(𝐸𝐷2): 𝑛𝑎𝑑𝑝ℎ𝑐𝑐𝑟𝐸𝑅(𝐸𝐷3)(7.21) 

 (𝐝𝐞𝐦𝐄𝐑𝟏. 𝟏: 𝐜𝐲𝟒𝟓𝟎𝐄𝐑𝟑. 𝟎: 𝐧𝐚𝐝𝐩𝐡𝐜𝐜𝐫𝐄𝐑𝟎. 𝟎𝟏𝟔 

When expressed as a mathematical marker, the 

recipe rule speeds the task of finding similar 

patterns in large data sets (Figure 7.26).  Notice 

that the mathematical markers at PB days 2 to 5 

detect the new membrane recipe for 

phenobarbital – as predicted by Figures 7.23 

and 7.25.   

 

 

Enzyme Densities to Mathematical Markers 
PB Days ED dem ED cytocp450 ED nadphccr 

0 dem1cytocp4505.3nadphccr0.057 

0.67 dem1cytocp4502.3nadphccr0.017 

2 dem1cytocp4502.6nadphccr0.014 

3 dem1cytocp4502.6nadphccr0.014 

4 dem1cytocp4502.6nadphccr0.014 

5 dem1cytocp4502.6nadphccr0.014 

Figure 7.26 Enzyme densities can be translated into 
mathematical markers.  This new category of 
mathematical markers – based on enzyme densities – 
might be especially helpful as we begin to decode the 
orchestration of the DNA networks.  Note that the markers 
– for purpose of illustration -  were not converted to 
decimal repertoire values (Original data adapted from 
Stäubli et al., 1969). 

By converting the results of the recipe rule into 

mathematical markers, we add a new data type 

that improves our chances of finding diagnostic, 

predictive, and interpretable patterns.  This 

becomes important when trying to generalize 

phenotypic responses to a wide range of 

exposures.  Moreover, when working out the 

rules operating during gene expression in the 

phenotype timing is everything.  From the way 

the recipe rules operate (Figure 7.25 and 7.26), 

we can now approach the transitional state as a 

series of events wherein different things 

happen at different times.  In other words, 

we’re learning how to play the complexity 

game.          

 

7.4.4 THE BLACK BOX 

 

Let’s pause for a moment and pull together 

what we are learning about how biology 

changes.  We can view a biological change from 

two perspectives – one copied from physics and 

chemistry and the other copied from physics, 

chemistry, and biology.  Both approaches begin 

by taking biology apart.  We have two choices.  

We can learn everything we want to know by 

studying the parts or we can use the parts to 
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put biology back together and learn whatever 

biology is willing to teach us. 

What, for example, did we learn about change 

from the parts before and after putting biology 

back together?  

 

7.4.4.1 Simple Change (Box Closed) 

The phenobarbital study (Stäubli et al., 1969), 

which took the parts approach, reported the 

following changes to the ER membranes of 

hepatocytes. 

End State (PB Day 5) 

Compared to the control, the specific surface 

area of the ER increased at day 0.67 (P˂0.01) 

and at days 2 and 5 (P˂0.001); the RER at day 2 

(P˂0.01) and the SER at day 0.67 (P˂0.01) and 

days 2 and 5 (P˂0.001).  Moreover, cytochrome 

P450 and n-demethylase were significantly 

different (P˂0.001) from the control at all the 

experimental time points.   

 

7.4.4.2 Complex Change (Box Open) 

During the transitional state when structural 

and functional changes occur, several biological 

rules were in play simultaneously. 

Transitional State (PB Days 2 to 5): 

• Each new enzyme density expresses the 

structure-function rule. 

• Each enzyme density increased over time, 

adhered to the structure-function change 

rule, and displayed a different rate constant 

(slope). 

• The enzyme densities indicated that the 

concentrations of the marker enzymes in 

the ER membranes continued to increase 

through the experiment. 

• The new recipe rule, which defines the 

relative packing of the enzymes in the ER 

membrane, detected a new membrane 

recipe at PB day 2. 

• When expressed as mathematical markers, 

the enzyme densities detected the new 

recipe at PB days 2 to 5. 

• Beginning at PB day 2, the hepatocytes 

added 5.86 m2 of new ER to the liver per 

day. 

Notice that simplification told us the ending of 

the phenobarbital story, whereas complexity 

told us how the ending came about. 

 

7.4.5 MOVING UPSTREAM 

 

7.4.5.1 Predicting mRNA from Enzyme 

Densities 

Once we identify the players and the sequence 

of a change over time, we can begin to use such 

phenotypic information to look for and predict 

the controlling events occurring upstream at 

the levels of RNA and DNA (Bolender, 2018).   

Starting with data published in the Stäubli paper 

(1969), we can generate enzyme densities and 

use them to predict the appearance of mRNA in 

liver hepatocytes in response to the 

phenobarbital induction (Figure 7.27; see also 

Bolender, 2018).  Although these results are 

preliminary, they serve to illustrate a potential 

strategy for linking in situ enzymes to their 

parental mRNAs.  
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Figure 7.27 This predicted curve for mRNA runs roughly 
parallel to the original cytochrome P450 curve shown in 
Figure 7.22 (Original data adapted from Stäubli et al., 
1969); From Bolender, 2018).  Once again, we find 
evidence for a rule-based change, this time extended to 
mRNA. 

 

7.5 LEVEL 4 – RATES OF CHANGE 

 

 

7.5.1 RATE CONSTANTS 

Biology defines changes mathematically as a 

complex relationship of structure to function, 

which we can detect over time with rate 

constant equations displaying R2 = 1 or R2 ≈ 1. 

To illustrate the calculation, we will use rate 

equations to predict the missing EDs at day 3 

for three marker enzymes (Figure 7.28).   

7.5.1.1 Integrated Rate Law 

We begin with the rate law:  

[𝐴] = [𝐴0] ± 𝑘𝑡 (for (+) and (-) slopes)   (7.22) 

Wherein the linear plot is [𝐴] 𝑣𝑒𝑟𝑠𝑢𝑠 𝑡 . 

Substituting enzyme densities (ED) and a 

positive slope gives:     

[𝐸𝐷3] = [𝐸𝐷0] + 𝑘𝑡,    (7.23) 

where: 

[𝐸𝐷𝑖] =
𝑈𝑛𝑖𝑡𝑠

𝑆𝑢𝑟𝑓𝑎𝑐𝑒
𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖 = 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝐴], 

k = slope = rate constant (units = concentration/time), 

𝑡 = 𝑡𝑖𝑚𝑒. 

 

7.5.1.2 Prediction - Day 3 of PB 

induction 

Note that day 3 becomes Day 2 here because 

Day 1 = Day 0) in the rate equation (Original 

data adapted from Stäubli et al., 1969; From 

Bolender, 2018). 

Cytochrome P450 

[𝐸𝐷3] = [𝐸𝐷0] + 𝑘𝑡   (7.24) 

[〖𝐸𝐷〗_3 ] = [1.341] + [0.4223/𝑑] × 2 𝑑  

[𝐸𝐷3] = 2.1856 

n-demethylase 

[𝐸𝐷3] = [𝐸𝐷0] + 𝑘𝑡   (7.25) 

[〖𝐸𝐷〗_3 ] = [0.5487] + [0.147/𝑑] × 2 𝑑  

[𝐸𝐷3] = 0.8427 

NADPH Cytochrome c reductase 

[𝐸𝐷3] = [𝐸𝐷0] + 𝑘𝑡   (7.26) 

[〖𝐸𝐷〗_3 ] = [0.0087] + [0.0018/𝑑] × 2 𝑑  

[𝐸𝐷3] = 0.0123 

 

Figure 7.28 The rate equations predicted the missing 
concentrations (EDs) at days 3 and 4 (Original data 
adapted from Stäubli et al., 1969); From Bolender, 2018).  

By tying the calculation of rate constants to a 

common reference (1 m2), we can use the ratio 

change rules to predict combinations of 

enzymes, membranes, and organelles to 

quantify the metabolic activities of a cell in situ 

(recall Figures 7.15 to 7.18).  Such a strategy 
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may encourage attempts to simulate portions 

of the metabolic chart in living cells. 

 

7.6 LEVELS 5, 6 – CELL AND ORGAN 

CHANGES 

 

 

7.6.1 DETECTING BIOCHEMICAL CHANGES – 

PER GRAM, PER CELL, AND PER ORGAN 

When left uncorrected, the concentration data 

(expressed per gram of liver) underestimates 

both the rate (slope) and amount (activity) of 

the cellular changes induced by phenobarbital.  

Moreover, these errors are not trivial.    

A biological change becomes a lesson in 

complexity.  Typically, it involves organelle and 

enzyme concentrations, cell frequencies, cell 

shapes, cell volumes, organ volumes, et cetera.  

We can, for example, use the CCC equation 

(2.28) to show how such variables combine to 

produce an experimental outcome (Figure 

7.29).    

Results expressed as absolute values (per liver – 

without cell loss/gram liver) detect a greater 

change compared to those based on 

concentrations (with cell loss/gram of liver).  At 

day 5 of phenobarbital treatment, for example, 

the corrected value for cytochrome P450 (per 

liver) is 60% larger than that of the original (per 

gram of liver).  Larger differences, of course, 

tend to result in better P values.    
 

Original Corrected (CCC) 

 Cell loss /g Liver No cell loss/g Liver 

PB days cytocp450/g Liver cytocp450/Liver 

0 9.283 9.283 

0.67 13.990 21.085 

2 21.045 31.657 

5 33.766 54.177 

 

Figure 7.29 Notice how concentration data diminishes the 
slope of the curve (green line) and underestimates the 
extent of the change (blue line) by about 60%. Original 
data adapted from Stäubli et al., (1969); (From Bolender, 
2018). 

 

7.7 LEVEL 6 – ORGAN CHANGES 

 

 

7.7.1 SAME DATA - DIFFERENT RESULTS 

A biological change puts a host of interacting 

variables in play, including molecules, 

organelles, cells, and organs.  Cell volume, for 

example, is one of the most important.  Figure 

7.30 shows what happens when we ignore 

changes in cell volume (per gram of liver) or 

account for them (per liver).  Notice that the 

two estimates differ by about 60%.  This 
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example and the one in Figure 7.29 help to 

explain why so much disagreement exists 

between similar studies in the biology 

literature.   

PB Exposure 

Days Liver (g) V Hep/g V Hep/100gbw V Hep/Liver 

0 1.00 1.00 1.00 1.00 

0.67 1.33 1.05 1.08 1.39 

2 1.20 1.09 1.24 1.31 

5 1.54 1.08 1.38 1.67 

 

Figure 7.30 Detecting a biological change depends on the 

number of active variables accounted for in the data 

analysis (Original data adapted from Stäubli et al., 1969; 

From Bolender, 2018).  By including more of the variables 

in play, we get a better result.  Notice that each data type 

generates a distinctly different interpretation of the same 

experiment.    

 

7.7.2 CHANGES IN ORGANELLES EXPRESSED 

PER ORGAN 

Given the limitations imposed on hierarchy 

equations by the presence of multiple volume 

distortions (Equation 5.3), we currently lack a 

dependable method for estimating a key piece 

of information - the total (absolute) surface 

area of a membrane compartment in an organ.  

Recall that such information can also tell us 

what’s happening in an average cell – when the 

number of cells in the population remains 

constant. 

When morphology can’t solve a problem alone 

or gets into trouble, we now have the option of 

turning to biochemistry for help.  Since we 

know how biology instigates a change across 

multiple levels of complexity by rule, we can 

solve our absolute data problem by applying 

one of our new rule-based equations.   

If we plug the absolute value for an ER marker 

enzyme activity (𝑈𝑡𝑜𝑡𝑎𝑙) and its membrane 

density (𝑀𝐷) into Equation 7.27, we can solve 

for the absolute amount of ER membrane 

surface area in an organ.  Figure 7.31 includes 

the data, equation, and calculations (for PB day 

5).  

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑀𝐷 × 𝑈𝑡𝑜𝑡𝑎𝑙    (7.27) 

𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = 𝑀𝐷𝑆(𝑒𝑟)/𝑐𝑦𝑡𝑜𝑃450 × 𝑈𝑐𝑦𝑡𝑜𝑃450/𝑙𝑖𝑣𝑒𝑟  

𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = 0.3298 × 330.3717 = 108.9651 m2 

Data 
Phenobarbital 
Exposure 

cytoP450 Ser/ 
cytocP450 

m2 (Total) 

Days U/Liver MD S(er) 

0 58.8810 0.9319 54.8683 

0.67 117.6576 0.8296 97.6115 

2 160.6590 0.5688 91.3890 

5 330.3717 0.3298 108.9651 

 

Figure 7.31 Biochemical data coupled with membrane 
densities (MD) can deliver estimates for the total ER 
surface area of hepatocytes in the liver with a minimum 
amount of stereologically related bias.  This becomes a 
promising candidate to replace the troublesome hierarchy 
equation (Original data adapted from Stäubli et al., 1969).  
Equation 7.27 suggests a rule-based approach to two long-
standing limitations of biological stereology - the volume 
distortions of hierarchy equations and the assumptions 
surrounding estimates of average cell data.  Note: Similar 
calculations based on the other two marker enzymes give 
identical values for total S(er).      

The results shown in the figure indicate that the 

amount of hepatocytic ER in the control liver 

doubles in response to the phenobarbital 
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exposure in about 16 hours, but the changes in 

ER membranes do not parallel those of its 

marker enzyme activities (Figure 7.20).  Why?   

Given the linear order detected at the earlier 

levels of complexity with R2 ≈ 1 equations 

(Figures 7.15, 7.22, 7.29), why do we end up 

with a nonlinear curve for the total ER surface 

area in the liver (Figure 7.31)?  Such an irregular 

curve tells us that the ER membranes are 

undergoing multiple changes at the same time.  

While new membranes are being added (the 

phenobarbital induced ones), the original ones 

(control) are most likely being recycled by 

autophagic vacuoles and dense bodies.   

This pattern of membrane removal becomes 

more pronounced after secession of drug 

treatment (Bolender and Weibel, 1973).  In 

both studies, a dip in the membrane surface 

area occurs at day 2, which for the recovery 

paper corresponds to a spike in the amount of 

autophagic vacuoles and dense bodies in the 

hepatocyte cytoplasm.  

Figure 7.31 indicates that the total changes in 

ER surface area follows a varied course.  

However, the recipe detection rule (Figure 7.25) 

indicates that linearity is reestablished at days 2 

and 5 of phenobarbital exposure.  Using the 

data in Figure 7.31, we can predict values for 

the intervening PB days 3 and 4.  This allows us 

to characterize the increase in total ER surface 

area in the liver with a R2 ≈ 1 equation (Figure 

7.32) where y equals the ER Surface area and x 

the days of phenobarbital exposure: 

𝑦 = 5.86𝑥 + 79.67 .   (7.28) 

Figure 7.32 shows that between days 2 and 5 

the total hepatocytic surface area increases by 

5.86 m2 per day.  Using the same recipe, 

hepatocytes make a new – but highly 

specialized - batch of ER membranes each day.  

In effect, the membrane becomes the 

hepatocyte’s solution to the phenobarbital 

problem.    

PB Exposure 

Day Surface 
per liver 

S ER  Step 
change 

Step 
change  

New ER 
per day 

2 91.39 100% 97.25 100% 5.86 m2 

3 97.25 106% 103.11 106% 5.86 m2 

4 103.11 113% 108.97 106% 5.86 m2 

5 108.97 119% 114.82 106% 5.86 m2 

 

Figure 7.32 In response to phenobarbital exposure, 
hepatocytes change the composition of their ER 
membranes and the rate at which the new PB metabolizing 
membranes are produced (5.86 m2/day).   

 

7.7.3 SAME DATA - SAME RESULTS 

In a rule-based system, the same data 

interpreted with different methods should give 

the same result.  We can test this assumption 

by comparing the results of the CCC (Equation 

2.23) and MD (Equation 7.27) methods, using 

the phenobarbital study to detect changes in 

the total liver ER.  Figure 7.33 shows that both 

methods produce the same result.   

 

Figure 7.33 When related to the liver, two rule-based 
methods (CCC and MD) detect the same phenobarbital-
induced changes in hepatocytic ER (Original data adapted 
from Stäubli et al., 1969).    
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7.8 TWO THEORY STRUCTURES 

COMPARED  

The theory structure provides the operating 

system under which we explore biology.  The 

primer argues that we need two, one to take 

biology apart (reductionist theory) and a second 

one to put biology back together (complexity 

theory).  Figure 7.34 illustrates the types of 

outcomes these theory structures can deliver.  

When used together, they allow us to solve the 

phenotype.   

7.8.1 DESCRIPTIVE SUMMARY OF THE PHENOBARBITAL STUDY 

REDUCTIONISM COMPLEXITY 

Subject: Detect significant changes in ER membranes Subject: Explain changes in ER membranes 

Strategy: Take biology apart, characterize parts Strategy: Copy and apply biology’s rules 

Proficiency: Statistics Proficiency: Biology’s Package of Skills 

Analysis: Black Box Model Analysis: Biology Model 

When related to specific dimensions (per 100 gbw): When subject to biology’s rules, the following apply: 

1. The ER membranes were significantly different from 
the control at: 
1.1. PB Day 0 

 38.41 m2/100gbw 
1.2. PB Day 0.67: P < 0.01 

52.97 m2/100gbw 
1.3. PB Day 2: P < 0.001 

60.54 m2/100gbw 
1.4. PB Day 5: P < 0.001 

63.19 m2/100gbw 
2. NADPH-cytochrome c reductase activities 

significantly different from the control at: 
2.1. PB Day 0 

0.2100 units/100gbw 
2.2. PB Day 0.67: P >0.05 

0.2163 units/100gbw 
2.3. PB Day 2: P < 0.001 

0.2789 units/100gbw 
2.4. PB Day 5: P < 0.001 

0.4803 units/100gbw 
3. N-demethylase activities were significantly different 

from the control at: 
3.1. PB Day 0 

3.7000 units/100gbw 
3.2. PB Day 0.67: P < 0.001 

13.1017 units/100gbw 
3.3. PB Day 2: P < 0.001 

19.3806 units/100gbw 
3.4. PB Day 5: P < 0.001 

34.5432 units/100gbw 
4. Cytochrome P450 activities were significantly different 

from the control at: 
4.1. PB Day 0 

19.6900 units/100gbw 
4.2. PB Day 0.67: P < 0.001 

30.4998 units/100gbw 
4.3. PB Day 2: P < 0.001 

50.8396 units/100gbw 
4.4. PB Day 5: P < 0.001 

91.5191 units/100gbw 

1. Level 1 Complexity 
1.1. Mathematical markers and connection ratios are 

shared across: 
1.1.1.  Animals 
1.1.2.  Cells of the liver parenchyma 
1.1.3.  Publications 

1.2. Ratio Chain Rule (Morphology) 
1.2.1. Cell components occur in ratios specific to a 

given cell type: 𝒎𝟏: 𝒎𝟐: 𝒎𝟑, … , 𝒎𝒏 
1.3.  Ratio Chain Rule (Biochemistry) 

1.3.1. Chemical constituents occur in ratios 
specific to a given organelle, compartment, 
or cell type: 
𝒃𝟏: 𝒃𝟐: 𝒃𝟑, … , 𝒃𝒏 

2. Level 2 Complexity 
2.1. Structure-Function Rule 

2.1.1. Each data point defines a    relationship of 
structure to function expressed as enzyme 
or membrane density: 𝒇(𝒙) = 𝒎𝒙 

2.1.2. Enzyme Density: ED = U/S 
Co Day 0 n-demethylase-ER 

ED = 0.2017 
PB Day 0.67 n-demethylase-ER 

ED = 0.5178 
PB Day 2 n-demethylase-ER 

ED = 0.6702 
PB Day 5 n-demethylase-ER 

ED = 1.1444 
2.1.3. Enzyme Density: ED = U/S 

Co Day 0 cytochrome P450-ER 
ED = 0.2017 

PB Day 0.67 cytochrome P450-ER 
ED = 0.5178 

PB Day 2 cytochrome P450-ER 
ED = 0.6702 

PB Day 5 cytochrome P450-ER 
ED = 1.1444 

2.1.4. Enzyme Density: ED = U/S 
Co Day 0 NADPHCCR-ER  

ED = 0.0114 
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 PB Day 0.67 NADPHCCR-ER 
ED = 0.0085 

PB Day 2 NADPHCCR-ER 
ED = 0.0096 

PB Day5 NADPHCCR-ER 
ED = 0.159 

2.2. Biochemical Homogeneity Test 

[𝑺𝒊 × 𝑬𝑫𝒊] + [𝑺𝒋 × 𝑬𝑫𝒋] = 𝑼𝒕𝒐𝒕𝒂𝒍 

[1.90 × 𝐸𝐷𝑠𝑒𝑟] + [2.97 × 𝐸𝐷𝑟𝑒𝑟] = 27.421 
[1.44 × 𝐸𝐷𝑠𝑒𝑟] + [2.88 × 𝐸𝐷𝑟𝑒𝑟] = 24.267 
𝐸𝐷𝑟𝑒𝑟 = 5.54 
𝐸𝐷𝑠𝑒𝑟 = 5.77 

2.3. Recipe Detection Rule: 
 𝒇(𝒙) = 𝒎𝒙 , where 𝒎 = ∆𝑬𝑫𝟏/∆𝑬𝑫𝟐 
For PB Day 2 and 5 
𝑦 = 0.3784 (passes through origin) 

2.4. Recipe Rule:  
𝒂(𝑬𝑫𝟏): 𝒃(𝑬𝑫𝟐): 𝒄(𝑬𝑫𝟑) … 𝒙(𝑬𝑫𝒏) 
Control (Mathematical Marker) 

𝐷𝑒𝑚𝐸𝑅(𝐸𝐷1): 𝑐𝑦450𝐸𝑅(𝐸𝐷2): 𝑛𝑎𝑑𝑝ℎ𝑐𝑐𝑟𝐸𝑅(𝐸𝐷3) 
𝐷𝑒𝑚𝐸𝑅0.2𝑐𝑦450𝐸𝑅1.1𝑛𝑎𝑑𝑝ℎ𝑐𝑐𝑟𝐸𝑅0.01 
Experimental (Mathematical Marker) 

𝐷𝑒𝑚𝐸𝑅(𝐸𝐷1): 𝑐𝑦450𝐸𝑅(𝐸𝐷2): 𝑛𝑎𝑑𝑝ℎ𝑐𝑐𝑟𝐸𝑅(𝐸𝐷3) 
𝐷𝑒𝑚𝐸𝑅1.1𝑐𝑦450𝐸𝑅3.0𝑛𝑎𝑑𝑝ℎ𝑐𝑐𝑟𝐸𝑅0.02 

3. Level 3 Complexity 
3.1. Structure-Function Change Rules: 

𝒇(𝒙) = 𝒎𝒙 + 𝒃 
3.1.1.  N-demethylase-ER 
𝑦 = 0.147𝑥 + 0.4017 
3.1.2. Cytochrome P450-ER 
𝑦 = 0.4223𝑥 + 0.9187 
3.1.3. NADPHCCR-ER 
𝑦 = 0.0018𝑥 + 0.0069 

4. Level 4 Complexity 
4.1. Rate Equation Rule: 

[𝑨] = [𝑨]𝟎 ± 𝒌𝒕 
4.1.1. N-demethylase-ER (PB Day 0.67) 
[𝐸𝐷0.67] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷0.67] = 0.5178 
4.1.2. Cytochrome P450-ER (PB Day 0.67) 
[𝐸𝐷0.67] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷0.67] = 01.2054 
4.1.3. NADPHCCR-ER (PB Day 0.67) 
[𝐸𝐷0.67] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷0.67] = 0.0085 
4.1.4. N-demethylase-ER (PB Day 2) 
[𝐸𝐷2] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷2] = 0.6702 
4.1.5. Cytochrome P450-ER (PB Day 2) 
[𝐸𝐷2] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷2] = 1.7580 
4.1.6. NADPHCCR-ER (PB Day 2) 
[𝐸𝐷2] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷2] = 0.0096 
4.1.7. N-demethylase-ER (PB Day 3) 
[𝐸𝐷3] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷3] = 0.8427 
4.1.8. Cytochrome P450-ER (PB Day 3) 
[𝐸𝐷3] = [𝐸𝐷0] + 𝑘𝑡 
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[𝐸𝐷3] = 02.1856 
4.1.9. NADPHCCR-ER (PB Day 3) 
[𝐸𝐷3] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷3] = 0.0123 
4.1.10. N-demethylase-ER (PB Day 4) 
[𝐸𝐷4] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷4] = 0.9897 
4.1.11. Cytochrome P450-ER (PB Day 4) 
[𝐸𝐷4] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷4] = 02.6079 
4.1.12. NADPHCCR-ER (PB Day 4) 
[𝐸𝐷4] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷4] = 0.0141 
4.1.13. N-demethylase-ER (PB Day 5) 
[𝐸𝐷5] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷5] = 1.1444 
4.1.14. Cytochrome P450-ER (PB Day 5) 
[𝐸𝐷5] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷5] = 3.0319 
4.1.15. NADPHCCR-ER (PB Day 5) 
[𝐸𝐷5] = [𝐸𝐷0] + 𝑘𝑡 
[𝐸𝐷5] = 0.0159 

5. Level 5 Complexity 
5.1. Relative Change per Average Cell Rules 

5.1.1. CCC Equation 

𝐶𝐶𝐶(𝑡𝑖 ) = 𝐶(𝑡𝑖)  ×
𝑊𝐿(𝑡𝑖) − 𝑊[𝐸𝐻𝑆(𝑡0)]

𝑊𝐿(𝑡0) − 𝑊[𝐸𝐻𝑆(𝑡0)]
 

5.1.2. MD equation (CytoP450) 
𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑀𝐷 × 𝑈𝑡𝑜𝑡𝑎𝑙  
Control Day 0: 𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = 58.87 m2 

Control Day 0: 100% 
PB Day 0.67: 𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = 97.61 m2 

PB Day 0.67: 178% 
PB Day 2: 𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = 91.39 m2 

PB Day 2: 167% 
PB Day 5: 𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = 108.97 m2 

PB Day 5: 199% 
6. Level 6 Complexity 

6.1. Absolute Change per Organ Rules 
6.1.1. CCC Equation 

𝐶𝐶𝐶(𝑡𝑖 ) = 𝐶(𝑡𝑖)  ×
𝑊𝐿(𝑡𝑖) − 𝑊[𝐸𝐻𝑆(𝑡0)]

𝑊𝐿(𝑡0) − 𝑊[𝐸𝐻𝑆(𝑡0)]
 

6.1.2. MD equation (for CytoP450) 
𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑀𝐷 × 𝑈𝑡𝑜𝑡𝑎𝑙  
Control Day 0: 𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = 58.87 m2 

PB Day 0.67: 𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = 97.61 m2 

PB Day 2: 𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = 91.39 m2 

PB Day 5: 𝑆𝑒𝑟,𝑙𝑖𝑣𝑒𝑟 = 108.97 m2 

Conclusions: In hepatocytes, exposure to PB significantly 
increases the surface area of ER and activities of its 
membrane-bound marker enzymes.  The primer explains 
how to convert the results in this column to those in the 
complexity column.    

Conclusions: In hepatocytes, PB triggers events across 6 
levels of complexity.  To detect and explain how these 
events produced a biological change, roughly 100 equations 
were needed.     

Figure 7.34 When viewing the same original data under two different theory structures, we can see two different versions of 
biology.  Reductionism offers a simplified picture, whereas complexity delivers details.   
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7.8.2 VISUAL SUMMARY OF THE 

PHENOBARBITAL STUDY 

By copying biology’s rules, this is what we can 

now say about the complexity of a hepatocytic 

response to the drug phenobarbital (PB); 

(Figures 7.34 to 7.37). 

In Response to PB, Hepatocytes Change their 

ER Membrane Recipe 

 

Figure 7.34 Hepatocytes change by changing the ratio 
recipe of its ER membrane-bound marker enzymes.  For 
example, the ratio goes from 1 unit of n-Demethylase 
activity to 5 units of Cytochrome P450 activity [1 to 5 
(Control Day 0)] to 1 to 2 (PB Day 0.67) and then 2 to 5 (PB 
Days 2 to 5); Original data adapted from Stäubli et al., 
1969.  

 

 

In Response to PB, Hepatocytes Change the 

Synthetic Rates of their ER Marker Enzymes 

 

Figure 7.35 Hepatocytes change the recipe for their ER 
membranes by changing the rates at which new enzymes 
are added to the membranes.  By using a synthetic rate for 
n-demethylase faster than the one for cytochrome P450, 
the enzyme ratio shifts from 1:5 to 2:5 (Figure 7.34); 
Original data adapted from Stäubli et al., 1969 

In Response to PB, Hepatocytes Change their 

ER Membranes According to the Structure-

Function Change Rule 

 

Figure 7.36 In response to phenobarbital, hepatocytes 
remodel their ER membranes by increasing their enzyme 
densities – the enzyme packing densities.  This produces a 
membrane recipe specific to phenobarbital at a specific 
dose (Original data adapted from Stäubli et al., 1969).    

In Response to PB, Hepatocytes Change the 

Rate Constants of specific membrane-bound 

marker enzymes of the ER.  These changes 

follow zeroth order kinetics. 

For PB days 0.67 to 5:   

[𝑨] = [𝑨]𝟎 ± 𝒌𝒕 . 

A rate constant defines the rate of change. 
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In Response to PB, Hepatocytes Change the 

Total Amount of Drug-Metabolizing ER 

Membrane in the Liver 

 

Figure 7.37 It takes 2 days of exposure to PB for the 
hepatocytes to come up with the new PB recipe for its ER.   
They then produce more of the PB membrane but continue 
to increase the concentration of the marker enzymes over 
time (detected as increasing enzyme densities); Original 
data adapted from Stäubli et al., 1969.    

 

7.9 CHANGES IN AVERAGE 

HEPATOCYTES  

If we use 1.93x109 as the number of hepatocytic 

nuclei in the liver (Marcos et al, 2006), we can 

calculate mashup values for average 

mononuclear hepatocytes (Figure 7.38). 

TOTAL LIVER TO AVERAGE HEPATOCYTE 

LIVER 

PB U/L S/L 

Days dem cytocP450 nadphccr s er/L 

0 11.06 58.88 0.63 54.87 

0.67 50.54 117.66 0.83 97.61 

2 61.24 160.66 0.88 91.39 

5 124.70 330.37 1.73 108.97 

AVERAGE HEPATOCYTE 

PB U/AV HEP S/AV HEP 

Days dem cytocP450 nadphccr s er/av hep 

0 5.73E-09 3.05E-08 3.25E-10 2.84E-08 

0.67 2.62E-08 6.10E-08 4.32E-10 5.06E-08 

2 3.17E-08 8.32E-08 4.57E-10 4.74E-08 

5 6.46E-08 1.71E-07 8.98E-10 5.65E-08 

Figure 7.38 The figure includes data for the total liver and 
for average hepatocytes, wherein (dem) stands for n-
demethylase, (cytocP450) for cytochrome P450, and 
(nadphccr) for NADPH cytochrome c reductase.  (Original 
data adapted from Stäubli et al., 1969 and Marcos et al., 
2006).  

7.10 UNFINISHED BUSINESS  

To study cells biochemically, we homogenize 

organs or tissues and then apply differential 

centrifugation to concentrate and isolate the 

various parts of the cells.  Using analytical 

differential centrifugation, de Duve and his 

colleagues introduced balance sheets as a way 

of keeping track of how much of what was 

going where and what was getting lost in the 

process.  This approach minimizes ambiguity by 

establishing ground rules for collecting, 

quantifying, and interpreting fractionation data.   

However, most studies of the ER do not include 

balance sheets, preferring instead to focus 

exclusively on the microsomal fraction wherein 

most of the ER membranes are to be found.  

Since Stäubli et al. (1969) took this route, we 

need to determine what effect this might have 

had on the results presented herein.  To do this, 

we’ll use a standard balance sheet to see how 

much of the ER membranes is expected to end 

up in the microsomal fraction and determine 

the extent of the contamination coming from 

other cell membranes (i.e., plasma membrane 

(PM), inner (IMIM) and outer (OMIM) 

mitochondrial membranes.  We can predict 

these membrane surface areas from marker 

enzyme activities in control animals using the 

equations given in Figure 2.4.   

 

7.10.1 APPLYING ANALYTICAL 

FRACTIONATION (CONTROL LIVER) 

Figure 7.39 includes marker enzyme activities 

for the ER (G-6-Pase), plasma membrane 

(5’nucleotidase), outer mitochondrial 

membrane (monoamine oxidase), and inner 

mitochondrial membrane (cytochrome 

oxidase), as reported by Bolender et al., (1978).  

The equation used to calculate the membrane 

surface area from a marker enzyme activity is 

included for each organelle compartment, along 
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with the biochemical and morphological 

recoveries.  Recoveries were calculated by 

comparing the value of the homogenate 

(extract (E) + nuclear (N) fraction) to the sum of 

the fractions (N (nuclear) + heavy mitochondrial 

(M) + light mitochondrial (L) + microsomal (P)) - 

as described by de Duve (1964, 1974).  The 

supernatant fraction was not included in the 

recovery calculation because it doesn’t contain 

any membranes.    

ER 
 

S=0.1677xU 

Control U/g Liver S/g Liver 

Fractions G-6-Pase ER (m²) 

N 4.256 0.714 

M 3.639 0.610 

L 2.435 0.408 

P 14.740 2.472 

SUM 25.070 4.204 

Recovery 95% 91% 

 

PM 
 

S=0.0381xU 

Control U/g Liver S/g Liver 

Fractions 5'NUC PM (m²) 

N 5.080 0.194 

M 3.400 0.130 

L 0.850 0.032 

P 4.390 0.167 

SUM 13.720 0.523 

Recovery 95% 87% 

 

OMIM 
 

S=1.5848xU 

Control U/g Liver S/g Liver 

Fractions MAO OMIM (m²) 

N 0.133 0.211 

M 0.353 0.559 

L 0.020 0.032 

P 0.087 0.138 

SUM 0.593 0.940 

Recovery 94% 93% 

 

IMIM 
 

S=0.1467xU 

Control U/g Liver S/g Liver 

Fractions CY OX IMIM (m²) 

N 4.120 0.604 

M 11.100 1.628 

L 0.700 0.103 

P 0.460 0.067 

SUM 16.380 2.403 

Recovery 83% 83% 

Figure 7.39 The figure includes recoveries for the marker 
enzymes and their associated membranes calculated using 
the equations given in Figure 2.4.  The recoveries for the 
biochemical data are slightly lower than previously 
reported (Bolender et al., 1978) because the soluble 
enzyme activities in the supernatant (S fraction) were not 
included.  The membrane-bound marker enzymes are 
paired with their respective organelle compartments.    

 

7.10.2 OPENING THE MICROSOMAL BLACK 

BOX 

We will use the data in Figure 7.39 to look 

inside the microsomal black box and ask a few 

questions.   

To what extent is the ER content of the 

microsomal (P) fraction contaminated by other 

membrane organelles?   

Figure 7.40, which answers the question for the 

control animals, shows that the microsomal 

fraction in this study contains 87% ER, 6% PM, 

5% OMIM, and 2% IMIM.  For the phenobarbital 

treated animals, the distribution of the 

membrane contamination is unknown. 

 

Figure 7.40 In the microsomal (P) fraction of the controls, 
the ER membranes have a 13% contamination coming the 
mitochondrial and plasma membranes.  This adds roughly 
13% more protein to the fraction, which would diminish 
the specific activity of the ER marker enzyme assay by 
adding roughly a 13% protein contaminant (Original data 
adapted from Bolender et al., 1978).   Since enzyme 
activities are related first to a mg protein and then to a 
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gram of liver, similar contaminations must exist in other 
microsomal studies as well.  Moreover, the distribution of 
the protein contamination across the fractions in the 
control may not be the same for the experimental 
fractions. 

Next Question.  What percentage of the ER 

membranes end up in the microsomal (P) 

fraction?   

For the control animals, 59% of the ER 

sediments in the microsomal fraction, with 

lesser amounts being distributed in the L (10%), 

M (15%), and N (17%) fractions (Figure 7.41).  

For the phenobarbital treated animals of the 

Stäubli study, the distribution of the ER 

membranes and marker enzyme activities in the 

fractions is unknown.            

 

Figure 7.41 The ER occurs in all the membrane containing 
fractions, with 17% going to nuclear (N), 15% to the heavy 
mitochondrial (M), 10% to the light mitochondrial (L), and 
59% to the microsomal (P) (Original data adapted from 
Bolender et al., 1978).  

What happens to the structure-function 

change equations of Figure 4.24 if we move all 

the ER marker enzyme activity (n-demethylase) 

into the microsomal (P) fraction (using the 

distribution given in the control profile of 

Figure 7.41), recalculate, and plot the revised 

enzyme densities?   

We get the results shown in Figure 7.42.  The 

enzyme densities continue to produce 

structure-function change equations, but they 

have different slopes and y intercepts.   

 

 
ED ED ED 

Days nadph-ccr/S(er) cytoc p450/S(er) n-demeth/S(er) 

0 0.0194 1.8189 0.3418 

0.67 0.0145 2.0430 0.8776 

2 0.0163 2.9796 1.1359 

5 0.0270 5.1388 1.9396 

 

Figure 7.42 When the control and experimental values are 
corrected to the total liver values, the same pattern as 
seen previously for the uncorrected values (Figure 4.25) 
remains unchanged (Original data adapted from Stäubli et 
al., 1969 and Bolender, et al., 1978).    

Do the equations in Figures 4.22 and 7.42 

detect the same relative amount of change?   

Yes.  Figure 7.43 shows that the enzyme 

densities detect the same amount of change 

when related to either the ER in the microsomal 

fraction or to the liver.     

 Microsomes (P) Liver Same for Both 

 ED ED % Change 

Days n-demethylase n-demethylase n-demethylase 

0 0.2017 0.3418 100% 

0.67 0.5178 0.8776 257% 

2 0.6702 1.1359 332% 

5 1.1444 1.9396 567% 

 

Figure 7.43 When the enzyme densities are expressed as a 
percentage of the controls (1 = 100% for the microsomes or 
liver), they identify the rate at which the ER membranes 
become enriched with the marker enzymes.  Both sets of 
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enzyme densities detected the same percentage change 
(Original data adapted from Stäubli et al., 1969 and 
Bolender et al., 1978).    

Notice in Figure 7.43 that the enzyme density 

and percentage change curves plot the same 

data but produce clearly different slopes and y 

intercepts.  When looking for a one to one 

relationship, this distinction between relative 

and absolute change becomes important.   

In short, what is the microsomal black box 

telling us?   

Since multiple variables are in play (Figures 7.39 

to 7.43), it seems fair to suggest that our 

chances of reproducing published microsomal 

studies are remote.   

But how do we deal with such a shortcoming?   

Let’s first try to understand the microsomal 

problem a little bit better and then figure out 

how we can solve it.        

 

7.10.3 UNTANGLING THE VARIABLES IN THE 

MICROSOMAL BLACK BOX 

Microsomes represent a methodological 

construct subject to the inconsistencies 

produced by differences in assay protocols, 

fractionation techniques, data references (mg 

protein), and animal variation.  Let’s see what 

we can learn about this construct by asking a 

few more questions.   

How do the control values for a given enzyme 

assay (n-demethylase) compare across 

publications?   

Figure 7.44 indicates that they can differ 

considerably - even by orders of magnitude.  

Recall that we found a similar pattern earlier 

using data collected from the brain (Figure 

4.15).       

 

Figure 7.44 Three independent estimates for the activity of 
n-demethylase in the microsomal fraction of control livers 
produced widely different values. 

Is the protein content of the microsomal 

fraction – the data reference for enzyme 

assays - consistent across publications?   

No, not according to the studies shown in 

Figure 7.45.  Once again, we can find an order 

of magnitude spread of the data.   

 

Figure 7.45  The plot illustrates control values for the mg 
protein reference assayed in the microsomal (P) fraction. 

Considering the methodological inconsistencies 

identified in the literature by Figures 7.40, 7.41, 

7.44, and 7.45, the design and application of the 

microsomal model being used to detect 

biological changes seems poorly prepared to 

pass a reproducibility test.  Each of these four 

figures makes the same point.  If we want 

reproducibility, then it should be part of our 

experimental design.  
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Is the phenobarbital study reproducible? 

Since the phenobarbital study of Stäubli et al. 

(1969) duplicated an earlier one by Orrenius et 

al. (1965), we can do a mashup and calculate a 

second set of enzyme densities based on an 

independent set of microsomal assays for n-

demethylase.   

When we plot the results of Orrenius and 

Staubli papers (Figure 7.46), we find that the 

amount of change in the enzyme densities 

differs by a factor of 2.  The answer to the 

question is yes and no.  The rule is reproducible 

but not the changes it detects.  Why?  The assay 

and fractionation methods are not the same.   

 

Figure 7.46 The same experiment – based on microsomes – 
detects different enzyme densities (n-demethylase/ER), but 
the data of both studies are subject to the same underlying 
structure-function change rule.  Note that the enzymes 
densities of the Orrenius study represent mashups, using 
ER surface areas borrowed from the Stäubli study change 
(Original data adapted from Orrenius et al., 1965 and 
Stäubli et al., 1969).   

Let’s review.  We can expect that microsomal 

studies will be difficult to reproduce because 

several variables are changing at the same time.  

Key variables include:  

1) Changes in the percentage of the total ER 

membranes in the microsomal fraction 

(Figure 7.41).   

2) Changes in the enzyme densities (Figure 

7.42). 

3) Changes in the contamination of the 

microsomal ER coming from other 

membrane organelles (and from other cell 

types), which adds a protein contamination 

(Figure 7.40).  Recall that enzyme assays are 

related to a mg of protein, which is 

measured in each fraction. 

4) Differences in the fractionation methods 

used to collect the microsomes influence 

the percentage of ER in the microsomal 

fraction (Figure 7.41).  

5) Differences in the methods being used to 

assay n-demethylase activity detect 

different amounts of change (Figure 7.44). 

6) Differences in the methods and standards 

used to assay protein influence whatever 

we relate to the mg protein reference.  This 

includes both enzyme activities and the 

enzyme densities derived therefrom (Figure 

7.45). 

7) Differences in enzyme assays produce 

different enzyme densities  (Figure 7.46). 

By opening the black box and looking inside, we 

can see what the experimental model used to 

detect biological changes with microsomal data 

collapses under the weight of at least seven 

confounding variables.  Effectively, this puts the 

reproducibility requirement well beyond reach.  

How do we solve this problem?  Design a new 

experimental model, one that embraces 

reproducibility and avoids troublesome 

variables. 

 

7.10.4 OPENING THE PHENOBARBITAL BLACK 

BOX 

Figures 7.23 and 7.26 suggest that the 

relationship of two of its ER marker enzymes (n-

demethylase to cytochrome P450) becomes 

optimal at day 2 of phenobarbital treatment 

and persists thereafter.   

Since we now suspect that the amoeba uses 

some form of linear programming to optimize 

its travelling salesman problem (Zhu et al., 

2018), how might the hepatocyte optimize a 
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solution to its problem of producing drug-

metabolizing membranes?   

Recall that a linear programming problem 

involves the relationship between variables, 

which are proportional to one another.  Such a 

problem can be solved graphically as the 

intersection of two linear equations subject to 

constraints.    

Although the two enzyme density curves 

displayed in Figure 7.47 intersect (x = -1.8779, y 

= 0.1256), the negative x value does not fit the 

typical linear programming model.  However, if 

the intersection represents a connecting value, 

and if the ratio of the marker enzymes is 

optimized (“via biology’s math”), then it might 

explain why all the data points fit the curves as 

well as they do.   

 

Figure 7.47 The two enzyme density curves intersect at x = 
-1.8779 and y = 0.12564.     

The hepatocyte uses two strategies when 

metabolizing a drug.  It increases the 

concentration of the drug-metabolizing 

enzymes per unit of ER membrane and/or 

increases the total amount of ER membrane in 

the cell.  What we don’t know is the 

relationship of the drug dose to the enzyme 

density and to the total cellular ER.   

What happens, for example, to the curves in 

Figure 7.47 and to the total liver ER when we 

double or half the daily dose of phenobarbital?  

How would such data fit into the pattern shown 

in Figure 7.47?  In effect, these are 

mathematical questions that we could ask 

biology to answer.        

 

7.11 OPTIMIZE THE STRUCTURE-
FUNCTION CHANGE EXPERIMENT 

Now let’s redesign the phenobarbital 

experiments of Stäubli et al., (1969) and 

Orrenius et al., (1965) but this time leave out 

most of the troublemakers. 

 

7.11.1 OPTIMIZING THE EXPERIMENTAL 

DESIGN 

We begin by asking “What do we want?”  We 

want an optimal experimental design, one that 

minimizes input (time and resources) and 

maximizes output (understanding, usefulness, 

and reproducibility).  The following protocol 

should get the job done: 

1) Use stereology to collect stereological data 

from intact livers.  Apply the Weibel-

Paumgartner corrections. 

2) Use an abbreviated form of fractionation to 

collect biochemical data.  This involves 

collecting just two fractions (extract (E) and 

nuclear (N)), assaying marker enzymes in 

both of the fractions, and expressing the 

results per homogenate (H).  Recall that H = 

E + N.   

3) Integrate and analyze the structure-

function data as described in the primer. 

4) Publish the details of the enzyme assays in 

minute detail. 

Figure 7.48 illustrates a minimum data set 

designed to study complex changes in 

hepatocytes.  For the phenobarbital study, 

drug-inducible enzymes  (e.g., n-demethylase, 

cytochrome P450) would be added to this basic 

protocol. 
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Figure 7.48 An optimal experimental model includes a 
collection of membrane-bound marker enzymes connected 
to their morphological locations and expressed as enzyme 
densities – estimated in the most efficient and reliable 
way.  The figure illustrates a minimal data set for each 
control and experimental time point (Data adapted from 
Bolender et al., 1978).   

This optimal experimental design, which 

juxtaposes total liver structure to total liver 

function, mitigates the effects of the troubling 

variables by eliminating the need to collect 

microsomes.   

 

7.11.2 WHY IS OPTIMIZATION NEEDED? 

Figure 7.49 lists the key features of the optimal 

experimental model.   

 

Figure 7.49 An experimental model is distinguished by 
what is does and does not do.  Moreover, it should include 
all the items in the package (9 to 14). 

Note that two items (*) in Figure 7.48 continue 

to thwart the goal of optimization – 

stereological volume distortions and 

inconsistent enzyme assays.  Suggestions for 

dealing with the stereology problem exist 

elsewhere (Bolender, 2013), but we still must 

deal with the assay problem. 

If we assume that enzyme assays will continue 

to show important differences across 

laboratories, then standardization based on 

control values may become a workable option.  

We can do the following.  Translate the 

enzymatic data into relative changes, identify a 

standard (a control value averaged across the 

literature), and multiply the relative changes by 

the control standard.  This option can be 

applied to both protein and enzyme assays.   

Will standardization work for the microsomal 

assays of the two phenobarbital studies?  Figure 

7.50 says no.  Why?  When dealing with the 

microsomal fraction, at least four variables are 

in play: protein content, enzyme assay, 

membrane contaminations, and the percentage 

of the ER in the microsomal fraction.  Taming 

one variable helps, but reproducibility requires 

taming them all.  This is what the optimal model 

is designed to.  It eliminates the unavoidable 

shortcomings of microsomes by substituting 

homogenates.   

 

 

 

 

 

 

 

Structure F/S

Membrane

S/g U/S

E N H = E + N ED = U/S

ER

22.620 4.256 26.876 4.600 5.843

IMIM

15.53 4.12 19.65 2.883 6.815

OMIM

0.506 0.133 0.639 1.013 0.631

PM

10.75 5.08 15.83 0.603 26.267

5' Nucleotidase

Function

OPTIMAL EXPERIMENTAL MODEL

Marker Enzyme

U/g

Glucose-6-Phosphatase

Cytochrome Oxidase

Monoamine Oxidase
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Figure 7.50 Compared to  Figure 7.46, standardizing the 
enzyme densities (n-demethylase/S(er)) improved the 
results but failed to fix our reproducibility problem.  Only 
one of the four time points (PB day 4) was  reproducible.  
Too many variables are still in play.      

 

7.12 WHAT DID YOU LEARN? 

What can you do now that you couldn’t do 

before reading the primer?   

You can read a research paper, look at the data 

types, and evaluate both the strengths and 

weaknesses of the authors’ results and 

conclusions.   

You now know how to look at the same data 

operating under two different theory 

structures.  When looking at the human 

amygdala through the eyes of reductionism, for 

example, you can see data being heavily 

influenced by biological variation (Figure 4.15), 

whereas complexity theory lets you view the 

same data when they are obeying a biological 

rule (Figure 4.16).  Moreover, you discovered 

that stereological data tell different stories 

before and after being corrected for 

methodological biases (Figures 3.16, 3.17, 3.19, 

5.3).  

You know how to use quantitative approaches 

to hunt for complex patterns in the literature 

(Chapter 4) and understand that local (per 

individual) and global (per population) patterns 

are subject to the same rules and the same test 

of reproducibility (Figures 4.15, 4.16).  

You know that problem solving involves finding 

and following clues.  The current reproducibility 

crisis, for example, provides a helpful clue by 

calling attention to a fundamental flaw in our 

approach to collecting data.  Unwittingly, our 

experimental methods routinely transform pure 

biological data into artificial data types by 

mixing two sources of variation (methodological 

and biological) -  each of which exhibits its own 

inter- and intra-variation.  This explains why our 

attempts to deliver reproducibility are - for all 

practical purposes – designed to fail.  Since you 

know that it’s also possible to design 

approaches that succeed, the reproducibility 

problem becomes manageable.  You can 

minimize the influence of the artificial data 

types by optimizing the experimental design 

(Figures 7.48 and 7.49) and by using a first 

principles approach to demonstrate that the 

same biological rule is being applied repeatedly 

(Figures 4.2, 4.4, 4.16, 4.18, 4.22, 4.23, 7.26, 

7.46 and 7.50).   

You now understand why complexity in biology 

depends importantly of the relationship of 

structure to function and how rule-based 

approaches to the basic and clinical sciences 

avoid much of the mischief created by 

simplifying biology, which reduces it to a 

catalogue of disconnected parts (Chapter 7).   

You know that a biological change involves the 

orchestration of many interacting rules, all of 

which become obscured when experiments are 

confined to black boxes.  You know how to 

open such boxes, look inside, and view the 
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underlying complexity of a biological change.  

You can do this because you have access to 

biology’s package of skills and know when, 

where, and how to discover and apply rules by 

reasoning with equations.   

You have seen how biology repeatedly 

incorporates ratios into its rules and that most 

rules are defined by the relationship of 

structure to function.   

You have discovered that steps can be taken to 

upgrade a descriptive science to a hard science 

by deriving it from first principles.  Many first 

principles of physics and chemistry - discovered 

using a theory structure based on reductionism 

- are already etched in stone.  Biology is less 

forgiving.  We tried reductionism only to 

discover that biology obeys rules etched both in 

stone and in genes.  This requires a double dose 

of theory structure – reductionism to take 

biology apart and complexity theory to put it 

back together.  By identifying first principles 

related to genes and their phenotypes, biology’s 

rules become a primary route to discovery in 

the life sciences.  Solving biology is now akin to 

solving physics and chemistry.  It’s done 

mathematically with equations.    

Fortunately for us, biology has already solved 

itself mathematically and all you have to do is 

follow the clues and copy biology.               
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CHAPTER 8 

HOW TO SOLVE BIOLOGY 
 

The primer describes how we can approach 

solutions to a wide range of challenging 

problems by moving our published data from 

journals to databases and by upgrading our 

reductionist model to one of complexity.  As a 

part of this process, we have learned how to 

recruit biology as our main problem solver by 

deferring to its rules and first principles.  This 

allows us to peer into the black boxes created 

by reductionism and to gain access to biology’s 

highly prized package of skills. 

But how do we use these newfound abilities to 

solve biology?  By upgrading the biology 

literature to a complexity model, we now have 

access to large amounts of highly connectable 

information.  This resource can be used to 

address new generations of problems in biology 

by assembling mashups.  Recall that a mashup is 

a derivative work created by combining 

individual pieces to create something new and 

more useful.  Its main characteristics often 

include combination, visualization, and 

aggregation. 

The purpose of this chapter is to illustrate this 

process by going through the major steps of 

assembling a typical mashup – using the liver as 

an example.  The process of solving biology is 

the same as it is for physics and chemistry – use 

the theory structure as a guide to identify and 

verify equations that allow us to discover, 

innovate, and solve problems.  Such is the 

nature of a science based on rules derived from 

nature. 

 

 

 

8.1 LIVER MASHUP 

 

8.1.1 SETTING THE GOALS 

In short, we would like to explore the rule-

based relationships of liver phenotypes to the 

upstream rules (genetic recipes) responsible for 

their design - across a wide range of 

experimental and clinical settings.  Specifically, 

where, when, and how are the genetic recipes 

assembled and what steps and requirements 

are involved in passing information back and 

forth between genotypes and phenotypes?  The 

answers will most likely come from published 

data in the form of ratios, algorithms, rules, 

equations, and networks of mathematically 

defined interactions   

Currently, we view genotypes as collections of 

genes, whereas biology may have a more 

expansive view.  Why?  Genes make up only 

about 2% to 3% of the DNA in our genomes.  

Might we be missing something – something 

just as important?  Will progress in 

understanding the information coded in our 

DNA be advanced by assembling mashups that 

combine the data, algorithms, rules, and 

equations of cell and molecular biology into 

search and discovery platforms?  What are we 

likely to discover?  The likely insight to come 

from such questions is the conclusion that 

solving the genotype begins by solving the 

phenotype.    

The incentive for such an exercise would be to 

produce an information resource appropriate to 

the task of integrating artificial intelligence, 

change, diagnosis, prediction, and 

reproducibility into the core disciplines of the 
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basic and clinical sciences.  Here, the argument 

becomes one of direction and timing.  By 

reverse engineering biology, forward 

engineering inherently becomes a safer and 

more productive enterprise.  Now that CRIPSR 

has opened Pandora’s box, a comprehensive 

approach to genetic modification will at some 

point become a priority issue - if it hasn’t 

already.   

 

8.1.2 OVERVIEW 

Our goal here is to reconstitute the structural 

and functional complexity of the liver – by rule 

– from a large collection of parts available to us 

in the literature.  To this end, we can begin the 

process by interconnecting structure-function 

equations such that the output variable of one 

equation becomes the input variable of 

another.  This will allow us to move information 

freely within and across multiple levels of 

complexity.  Using the phenotype equations 

included in chapter 7, we already have the 

wherewithal to use seed values and lookup 

tables to generate quantitative phenotypes for 

the molecules, organelles, and cells that define 

the liver.   

By deferring to biology’s rules and equations 

generated from parallel complexities, published 

data from a wide range of otherwise 

incompatible publications can contribute to 

putting the liver back together.  In effect, by 

marshalling contributions from thousands of 

investigators, the resulting phenotypes become 

representative of biology and compatible with a 

wide range of research programs. 

 

8.1.3 PRIMARY SOURCES OF LIVER DATA 

Since mammalian livers within and across 

species are likely to share many similar genes 

and rules (Alberts et al., 2014, Lodish et al., 

2016), the mashup can assimilate data coming 

from multiple species.  We already know, for 

example, that humans and rats can use similar 

rules to organize cytoplasmic membranes in 

hepatocytes (Bolender, 2017). 

 

8.2 MASHUP PROCEDURE (LIVER) 

The long-term goal of the mashup procedure is 

to assemble quantitative phenotypes for the 

liver that can not only identify, interpret, and 

explain the rules governing gene expression, 

but also to allow diagnosis, prediction, and in 

situ simulations.  Such an approach is consistent 

with the concept of a universal biology 

database that allows us to treat data collected 

from the literature as one big experiment.    

We will start the mashup process with 

hepatocytic ER, continue the work up with 

other membrane organelles, add the particle 

organelles (peroxisomes and dense bodies), and 

repeat the entire process for Kupffer, fat-

storing, and endothelial cells.   

 

8.2.1 STEP 1 – LOCATE DATA BY READING 

PAPERS 

By any measure, accessing data remains the 

greatest challenge because many research 

publications continue to exist behind paywalls.  

Recall that when building even a modest 

database, which involves collecting data from 

about 5,000 studies, an investigator can expect 

to browse roughly 15,000 papers.            

    

8.2.2 STEP 2 –  STANDARDIZE DATA 

Given conventions well-established in the 

biology community, absolute values and 

concentrations represent the most widely 

published data types.  The goal here is to 
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generate data tables from each paper to speed 

data entry and to minimize errors.  Data are 

standardized one paper at a time.    

 

8.2.3 STEP 3 – GENERATE PRIMARY AND 

DERIVATIVE LITERATURE DATABASES 

Use relational databases to manage published 

data.  This includes generating derivative 

databases capable of targeting specific goals.        

 

8.2.4 STEP 4 – GENERATE UNIVERSAL 

BIOLOGY DATABASES 

By translating the data stored in the literature 

database into mathematical markers and 

connection ratios, for example, they become 

primed to find quantitative patterns in the 

literature.   Such patterns, which derive from 

quantitative relationships, can serve as effective 

diagnostic and predictive tools.  Moreover, they 

provide clues as to when, where, and how key 

events are happening.            

 

8.2.5 STEP 5 – GENERATE RULE-BASED 

EQUATIONS 

Modular data sets connected by equations 

combine to detect and replicate complex 

changes occurring in hepatocytes.  Identify the 

equations used to describe events occurring in 

complexity levels 2 to 6, and store them in 

tables and databases suitable for distribution. 

By taking a modular approach to reconstructing 

biological events, equations and data can supply 

local and global information, be combined to 

form simulators, integrate published data, 

predict missing values, and generate diagnostic 

and predictive patterns. 

One of the unexpected surprises to come from 

the experience of building a biology database is 

that published data are sparse and often 

difficult to interpret as a complexity.  Fitting 

existing data to equations and then using them 

to predict missing information offers a workable 

solution to this limitation. 

 

8.2.6 STEP 6 – RUN WORKSHEET 

SIMULATIONS 

Fundamental to creating large scale mashups is 

an ability to generate and synchronize multiple 

linear pathways – structurally and/or 

functionally.  Modules, identified as the 

equivalent of phenotypic codes, can provide 

workable solutions to both standardization and 

connectivity across publications.  In effect, 

modules become an essential building block of 

the mashup.  For example, enzyme densities 

serve as modules that combine to generate 

structure-function equations capable of solving 

a wide range of problems.      

 

8.2.6.1 Predict Biochemistry from 

Biochemistry 

Phenotypic codes for biochemical data identify - 

as ratios - the relationship of one enzyme 

activity to another as a linear string – according 

to the ratio chain rules.  This defines a chemical 

stoichiometry as the relative amounts of 

enzyme activities in a connected set of ratios 

making up a string.  Such an arrangement 

characterizes the biochemical phenotype as it 

exists under control and experimental 

conditions.  Using this rule, we can generate 

data from seed values and aggregate large data 

sets across a wide range of experimental 

settings (Figures 7.15 and 7.18).  Here the 

objective is to translate point data into well-

springs of new information.     
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8.2.6.2 Two Way Predictions 

Since a similar stoichiometry exists among the 

structural components of cells and tissues 

(Figure 7.16), morphological strings can be 

generated and used in a similar manner.  

Furthermore, we can use ratios to connect the 

organelle compartments of four cell types 

(hepatocytes, Kupffer cells, fat-storing cells, and 

endothelial cells), which together make up the 

liver parenchyma (Figure 7.17). 

 

8.2.4.3 Predict One from the Other: 

Structure → Function and  Function 

→ Structure 

Structure-function equations – based on 

enzyme and membrane densities - have the 

capacity to predict biochemistry from 

morphology and morphology from biochemistry 

(Figure 7.15).  These equations, which can be 

generated for control (Figure 7.15) and 

experimental settings (Figure 2.5) supply 

missing information, fingerprint phenotypic 

states, verify reproducibility, and produce a 

new generation of complex data types.    

Moreover, we now have the option of using 

enzyme and membrane densities to generate 

matching data for papers reporting just 

morphological or biochemical results.    

 

8.2.7 STEP 7 –  CALCULATE ENZYME AND 

MEMBRANE DENSITIES FOR CELL ORGANELLES 

Using the worksheet models shown in Figures 

2.1 (structure-function rule), 7.15 (control), and 

2.5 (change), tables of structure-function 

equations can be accumulated and used to 

define liver phenotypes in a variety of settings.    

8.2.8 STEP 8 – CALCULATE RATE CONSTANTS 

FOR BIOCHEMICAL CHANGES IN ORGANELLES 

When simulating portions of the metabolic 

chart, to which the liver contributes generously, 

the most problematic variables become the rate 

constants, which come from in vitro estimates.  

Enzyme densities, which relate changes in 

enzyme activities to a standard unit of 

membrane surface area (1 m2) - instead of the 

usual mg of protein or gram of liver – offer the 

advantage of estimating the rates of 

biochemical changes in situ.           

 

8.2.9 STEP 9 – CALCULATE ABSOLUTE 

VALUES FOR CELL COMPARTMENTS 

The equations used in Figure 7.31, which 

calculate membrane surface areas from 

membrane densities and units of enzyme 

activity, offer a workable solution to the 

absolute data problem created by the hierarchy 

equations of stereology.  A similar approach 

works for biochemical data (the equations in 

Figures 7.15 to 7.18). 

 

8.3 Online Resources 

 

8.3.1 WEBSITES 

The Enterprise Biology Software Project 

introduces websites in step with the evolution 

of the project: 

2001: enterprisebiology.com 

• Yearly Progress Reports (1 to 16) 

• Software packages 

2016: playingcomplexitygames.com 

• eBook: Playing the complexity Game 

with Biology 

file:///C:/Users/R/Documents/enterprisebiology.com
file:///C:/Users/R/Documents/playingcomplexitygames.com


150 
 

 

• Considers strategies for interacting with 

biology as a complexity 

• Includes picture-based summaries 

• Offers databases, directions, 

worksheets, and templates 

• Catalogues yearly reports (2001 to 

2018) 

2019: solvingbiology.com 

• eBook: Solving Biology: A Primer 

• Serves as a beginner’s guide to solving 

biology as a complexity 

• Includes picture-based summaries 

 

8.3.2 YEARLY REPORTS 

The EBSP reports and support material were 

originally distributed on CD or DVD to 

contributing authors located in more than 45 

countries.  The support material included 

literature databases, associated computer 

programs, and a narrative consistent with the 

view that discovery becomes the natural 

consequence of studying biology as a 

complexity.  Similar resources are available 

online. 

 

 

REPORTS 

2001: Aggregating Research Data 

2001: Background Courses: biology, stereology 

2002: Patterns in Relational Databases 

2003: Simple and Complex 

2004: Data to Equations 

2005: Puzzles/Universal Biology Databases 1.0 

2006: Universal Biology Databases 2.0 

2007: Universal Biology Databases 3.0 

2008: Universal Biology Databases 4.0 

2009: Systems Biology Two 

2010: Organism Codes 

2011: Mathematical Mapping 

2012: Mathematical Markers 

2013: Complexity Games 

2014: Big Data 

2015: Disorder-Order 

2016: Precision-Accuracy-Reproducibility 

2017: Biological Homogeneity 

2018: Biological Change   
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CHAPTER 9 

THEORY OF BIOLOGICAL COMPLEXITY2 
 

9.1 INTRODUCTION 

Complexity in biology involves two seemingly 

inconsistent layers of information: rules and 

adaptability.  The rules layer exhibits little or no 

variation, whereas the adaptability layer allows 

widespread variation.  To us, one appears 

statistically quiet, the other noisy.   

The biology literature, which houses a vast 

collection of parts data, focuses almost entirely 

on data coming from the adaptability layer.  

Consequently, the current iteration of the 

literature operates largely in the absence of 

biology’s rules.  A central challenge of the 

primer was to show how we can move the parts 

data from the adaptability layer back onto the 

rules layer where they normally occur in nature.  

This was accomplished by recovering the 

missing connections and complexities.   

Recall that rules – like genes – tend to be stable 

and widely shared within and across species, 

whereas the parts of an individual vary in 

response to local conditions as the need arises.  

This helps to explain why we rely on statistics to 

detect simple changes in parts (high variability), 

but patterns, rules, and equations to capture 

complex changes (low variability).    

The theory of biological complexity encourages 

us to ask the most telling question.  Why does 

biology operate by rule, but not the science of 

biology?  This fact seems sadly amiss and 

counterproductive.  The one thing we seem to 

be missing is a theory structure that encourages 

us to derive biology from first principles and the 

 
2 Chapter updated from the 2014 Report (appendix III) 
and chapter 8: Playing the Complexity Game, 2016. 

rules derived therefrom.  This is how physics 

and chemistry operate.  Why not biology?       

Recall that the overarching principle of the 

theory structure being proposed herein states 

that it takes a complexity to solve a complexity.  

This means that to test the theory empirically 

we need to construct parallel complexities as 

close to the original as possible, relying 

exclusively on the rules that exist first in biology 

and then mirrored in our reconstituted 

complexities.  In effect, complexity theory 

becomes the evolving product of copying 

biology. 

Unfortunately, biological complexity remains 

largely an unfamiliar place.  New rules apply, 

our perceptions change, and we ask and answer 

questions differently.  Our first order of 

business, however, is to learn the rules of the 

game and then use them to assemble a more 

productive and insightful theory structure.  This 

becomes an ongoing process wherein the 

theory unfolds in step with the discovery 

process.  Solving biology begins by solving the 

phenotype, which the Primer explains how to 

do.    

The fundamental building blocks of a biological 

complexity include parts and connections.  

Volumes, surfaces, lengths, and numbers 

(counts) define the basic elements of the parts 

quantitatively, whereas the ratios of the parts 

define the connections.  From this simple 

beginning, the complexity of an organism grows 

as an assemblage of parts and connections 

cascading across the hierarchical levels of an 
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organism.  The rules become the glue – the 

mathematics - that holds everything together.   

Since complex data sets consist more or less of 

the same basic building blocks wherein all such 

blocks interconnect, our parallel complexities 

begin to mirror the original biology – at least at 

a beginner’s level.  Testing this new theory 

structure consists of looking for persistent 

patterns - locally and globally – and then using 

such patterns to define the rules of the game 

we are trying to play in collaboration with 

biology.       

The primer encourages the reader to ask basic 

questions about how biology is to evolve as a 

science.  By introducing new theory structures, 

we get to create new platforms for innovation 

and discovery, free from the many limitations 

imposed by entrenched, but outdated theories.  

The goal becomes one of coexisting with 

biological complexity, not ignoring it, or 

pretending that it doesn’t exist.   

Ideally, we want to use complexity theory to 

reconstruct biology mathematically from first 

principles using published data as our source of 

empirical proof. Thus far, the working theory 

structure has generated a wide range of 

equations capable of capturing several of 

biology’s principles and rules.  In effect, the 

process of redefining biology in terms of the 

rules and principles defining its mathematical 

core is now well underway.  We now know that 

biology uses linear models based on ratios of its 

parts to assemble phenotypes and to change 

them.       

 

9.2 A FIRST PRINCIPLES APPROACH 

Biology – as a science – can be said to derive 

from first principles when it relies on the basic 

and established laws of nature.  In the absence 

of such principles, biology defaults to the 

models and assumptions often driven by 

necessity or convenience.   

Can we derive biology from first principles?  The 

answer is yes.  If biology can do it, we can do it 

too.  When we bring the power of published 

data coming from thousands of highly skilled 

investigators into conjunction, the basic 

principles and rules of biology begin to appear 

almost effortlessly.   

The argument for a first principle approach to 

biology becomes even more compelling 

because of the opportunities it creates.  Why? 

An insightful answer comes from Elon Musk.  

“We normally think by analogy - by comparing 

experiences and ideas to what we already know 

- but there’s a better way to innovate.  I think 

it’s important to reason from first principles 

rather than by analogy.  The normal way we 

conduct our lives is we reason by analogy. [With 

analogy] we are doing this because it’s like 

something else that was done, or it is like what 

other people are doing.  [With first principles] 

you boil things down to the most fundamental 

truths…and then reason up from there.” 

Musk continues: “The benefit of first principles 

thinking?  It allows you to innovate in clear 

leaps, rather than building small improvements 

onto something that already exists.”  However, 

he warns us about using first principles for 

innovating: “It takes a lot more mental energy.”  

As the primer suggests, first principles become 

one of the many rewards to come from playing 

the complexity game with biology.  They allow 

us to approach biology as a mathematical 

science, create universal databases from the 

biology literature, understand the nature of 

change in biology, identify widespread 

connectivity, work out data driven methods for 

clinical diagnosis and prediction, harmonize 

living and postmortem data, unfold the disease 

process, manage our current problems with 
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reproducibility, and profit from the untold 

riches of biological complexity.   

 

9.3 FIRST PRINCIPLES 

 

9.3.1 PRINCIPLE 1: STRUCTURE-FUNCTION 

RULE 

Two general equations define a biological 

change, which begins at complexity levels 2 and 

3 (Figure 9.1).  As the figure shows, two steady 

states surround an intervening transitional 

state.  The curve identifies a string of enzyme 

densities (blue dots) that define the change as it 

occurs over time.  The steady states require a 

single equation, whereas the transitional state 

requires two.        

 

Figure 9.1 A rule-based change involves two steady states 
(before and after) separated by a transitional state 
wherein the changes occur.  The blue dots identify enzyme 
densities (ED) before (ED1), after (ED7) and during (ED2 to 
E 6) a change.  Table legend: no change (↔), increase (↑), 
and change in recipe (∆).  Once a new recipe is established 
(ED2, the ratio of the parts remains constant, but their 
packing density increases until the new steady state is 
reached (ED7).     

The first biological principle in play includes the 

structure-function rule (based on the postulates 

of biochemical homogeneity), which relates 

units of marker enzyme activity to a square 

meter of membrane surface area: 

Structure-Function Rule 

𝒇(𝒙) = 𝒎𝒙  where, 

𝑈 = 𝑚 × 𝑆 , and 

𝑚 = 𝑈/𝑆 = 𝐸𝐷. 

Note that the enzyme density (ED) remains 

constant during the two steady states before 

(ED 1) and after (ED 7), but changes during the 

transitional period (ED 2 to ED 7).   

 

9.3.2 PRINCIPLE 2: STRUCTURE-FUNCTION 

CHANGE RULE 

A biological change in a membrane organelle 

such as the ER includes multiple events: 

• Changes in the packing densities (EDs) of 

the biochemical constituents in the 

membrane, 

• Changes in the ratios of the biochemical 

constituents (the membrane recipe), and 

• Changes in the total amount of the ER 

membrane surface area in average cells and 

organs. 

The changes of the transitional state adhere to 

the following rules: 

Structure-Function Rule 

𝒇(𝒙) = 𝒎𝒙  where, 

𝑈 = 𝑚 × 𝑆 , and 

𝑚 = 𝑈/𝑆 = 𝐸𝐷. 

Structure-Function Change Rule 

𝒇(𝒙) = 𝒎𝒙 + 𝒃  where, 

𝐸𝐷 = 𝑚𝑥 + 𝑏,     
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𝑥 = 𝑡𝑖𝑚𝑒, 𝑎𝑛𝑑 𝑏 = 𝑦 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

Recipe Rule  

𝒂(𝑬𝑫𝟏): 𝒃(𝑬𝑫𝟐): 𝒄(𝑬𝑫𝟑) … 𝒙(𝑬𝑫𝒏) 

𝑎𝐸𝐷1𝑏𝐸𝐷2𝑐𝐸𝐷3 … 𝑥𝐸𝐷𝑛 

Absolute Change per Organ Rule 

𝒇(𝒙) = 𝑬𝑫 × 𝑺𝒕𝒐𝒕𝒂𝒍  where, 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐷 × 𝑆𝑡𝑜𝑡𝑎𝑙 

𝒇(𝒙) = 𝑴𝑫 × 𝑼𝒕𝒐𝒕𝒂𝒍  where, 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑀𝐷 × 𝑈𝑡𝑜𝑡𝑎𝑙  . 

 

9.4 THEORY OF BIOLOGICAL 

COMPLEXITY 

In its simplest form, the theory states that it 

takes a complexity to solve a complexity.  We 

can define a biological complexity 

mathematically as a distinct set of elements 

(parts and connections) that combine to form 

the same rule-based patterns encountered both 

locally and globally.  Typically, biology displays 

its complexity as stoichiometries based on the 

ratios of it parts and applies this rule to create 

both order and disorder.      

A theory structure includes a set of guidelines 

for exploring biology as a complexity.  The 

following lists summarize the goals, 

requirements, principles, and equations, which, 

when taken together chart the progress to date 

in assembling a new and more biologically 

friendly theory structure.   

 

9.4.1 GOALS 

• Organize and generalize the data of the 
biology literature.  

• Define and test a data-driven approach 
to the basic and clinical sciences. 

• Identify mathematical patterns in 
biology. 

• Explore biology as a rule-based system. 

• Capture biology’s rules empirically with 
equations that carry R2s equal or close 
to one. 

• Use published data to create parallel 
complexities based on rules intrinsic to 
biology. 

• Minimize bias in experimental systems.  

• Avoid the negative effects of biological 
variation. 

• Use biological variation to detect rules. 

• Optimize the definition of 
reproducibility. 

• Remove postmortem data distortions 
by applying corrections based on living 
standards.   

• Demonstrate with practical examples 
the effectiveness of an approach to 
problem solving based on empirical 
data guided by verifiable rules.  

• Quantify biological phenotypes and use 
them to diagnose and predict outcomes 
throughout the biological hierarchy of 
size. 

• Reevaluate traditional methods of 
collecting, reporting, and interpreting 
data in the basic and clinical sciences. 

• Optimize experimental designs. 

• Assemble diagnostic databases from 
the biology literature capable of 
diagnosing disorders and diseases. 

• Develop methods for extracting useful 
patterns from large data sets. 

• Identify the strategies being used by 
biology to create disorders.  

• Identify and catalogue quantitative 
relationships of structure to function. 

• Detect and unfold the complexity of 
biological changes.  

• Develop a rule-based strategy for 
connecting phenotypes to genotypes. 

• Reverse-engineer phenotypes and 
genotypes by rule. 
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9.4.2 REQUIREMENTS 

• Collect biological data with unbiased 
sampling methods. 

• Express data as volumes, surfaces, 
length, numbers, or derivatives thereof.   

• Assemble data as connected sets, 
consisting of ratios, mathematical 
markers, connection ratios, strings, and 
networks.  

• Integrate data quantitatively within and 
across hierarchical levels. 

• Use a universal data format – based on 
ratios - to organize and generalize 
published data. 

• Operate within the bounds of 
complexities parallel to the ones 
defined by biology. 

• Correct the volume distortions 
associated with postmortem data. 

• Tune databases – by applying filters - to 
enable and strengthen their diagnostic 
and predictive properties. 

• Copy biology by copying patterns, rules, 
equations, and algorithms. 

 

9.4.3 FIRST PRINCIPLES (AS STATEMENTS) 

To derive biology from first principles, we begin 

by identifying rules as prospective candidates.  

We can assume that such rules translate into 

biological patterns, equations, and algorithms 

that define biology as a complex adaptive 

system.  Rules that generalize become the 

principal candidates for first principles.   

Rule 1: Biology is a complexity consisting of 

parts and connections.   

Rule 2: Biology defines and controls its 

complexity by using ratios of one part to 

another.   

Rule 3: Biology assembles complexity with 

strings, modules, and networks of parts 

connected by ratios.  

Rule 4: Biology allows the same two parts to 

form different ratios (valences). 

Rule 5:  Biology allows considerable variation in 

the size of its parts, but minor variation in the 

quantitative relationship of one part to another.  

It maintains rule-based order, which can change 

during growth, aging, disease, and adaptive 

responses.  

Rule 6: Biology uses a modular approach to 

construct itself and to change.   

Rule 7: Biology can define complexity with 

modular structures, starting with two parts (a, 

b) with two values (x, y) and one connection 

(ax:by).     

Rule 8: Biology consists of nested complexities, 

which fold and unfold by rule.   

Rule 9: Biology uses extensive redundancy to 

maintain and strengthen connectivity. 

Rule 10: Changing biological components and 

constituents represents a complex undertaking, 

extending within and across multiple levels of 

complexity.   

Rule 11: Biology optimizes outcomes. 

Rule 12: Biology grows in distinct steps, wherein 

patterns alternate between active growth 

(dynamic ratios) and no growth (stable ratios).   

Rule 13: Biological parts can serve as dominant 

central organizers, wherein they form 

connections (ratios) with many other parts. 

Rule 14: Biology unfolds into levels of 

complexity defined by relationships of structure 

to function. 

Rule 15: Reproducibility, which is a universal 

property of biology, can be detected and 

verified with ratio-based patterns and 

equations. 

Rule 16: In biology, connectivity generates 

quantitative patterns. 
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Rule 17: In biology, a change or disorder 

involves reordering – by rule - both parts and 

connections. 

Rule 18: In biology, change represents a 

continuum of complex events involving many 

parts of an organism. 

Rule 19: Biology changes by rule. 

Rule 20: In Biology, rules can be identified with 

equations fitted to regression lines with R2 = 1 

or ≈ 1 and as reproducible patterns detected 

with mathematical markers and connection 

ratios.  

Rule 21: Biochemical homogeneity - a property 

of biology fundamental to the relationship of 

structure to function - exists quantitatively as 

biochemical and morphological densities. 

Rule 22: Rate constants define enzyme 

densities as key elements of biological 

complexity. 

Rule 23: interpreting complex biological 

changes requires a mathematical collaboration 

between morphology and biochemistry. 

 

9.4.4 FIRST PRINCIPLES AND RULES (AS 

EQUATIONS) 

Deriving biology from first principles begins by 

identifying three such principles: 

 

9.4.4.1 Principle 1: Ratio Rules 

Rule 1: Mathematical Marker Rule: 

𝒂𝒙: 𝒃𝒚: 𝒄𝒛 … 𝒏 

Rule 2: Connection Ratio Rule: 

𝒑𝒂𝒓𝒕𝒙: 𝒑𝒂𝒓𝒕𝒚: 𝒑𝒂𝒓𝒕𝒛 … 𝒏 

 

 

Rule 3: Ratio Chain Rules: 

Morphology 

𝒎𝟏: 𝒎𝟐: 𝒎𝟑 … 𝒎𝒏 

Biochemistry 

𝒃𝟏: 𝒃𝟐: 𝒃𝟑 … 𝒃𝒏 

 

9.4.4.2 Principle 2: Structure-Function 

Rule 

               𝒇(𝒙) = 𝒎𝒙; 𝒚 = 𝒎𝒙 

Rule 4: Enzyme Density Rule: 

                   𝒎 = 𝒚/𝒙 

                   𝑬𝑫 = 𝑼/𝑺 

 

Rule 5: Membrane Density Rule: 

                   𝒎 = 𝒚/𝒙 

                   𝑴𝑫 = 𝑼/𝑺 

 

Rule 6: Simultaneous Equations Rule: 

Equation 1: 

  [𝑺𝒊 × 𝑬𝑫𝒊] + [𝑺𝒋 × 𝑬𝑫𝒋 = 𝑼𝒕𝒐𝒕𝒂𝒍 

Equation 2: 

  [𝑺𝒊 × 𝑬𝑫𝒊] + [𝑺𝒋 × 𝑬𝑫𝒋 = 𝑼𝒕𝒐𝒕𝒂𝒍 
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Rule 7: Recipe Detection Rule: 

               𝒎 = 𝒚/𝒙 

               𝒎 = 𝑬𝑫𝒚/𝑬𝑫𝒙 = Ratio 

 

Rule 8: Recipe Rule: 

Control 

𝒂𝑬𝑫𝒄𝒐𝟏: 𝒃𝑬𝑫𝒄𝒐𝟐: 𝒄𝑬𝑫𝒄𝒐𝟑 … 𝒙𝑬𝑫𝒄𝒐𝒏 

Experimental 

𝒂𝑬𝑫𝒆𝒙𝟏: 𝒃𝑬𝑫𝒆𝒙𝟐: 𝒄𝑬𝑫𝒆𝒙𝟑 … 𝒙𝑬𝑫𝒆𝒙𝒏 

 

9.4.4.3 Principle 3: Structure-Function 

Change Rule 

𝒇(𝑥) = 𝑚𝑥 + 𝑏 

Rule 9: Structure-Function Change Rule:  

𝐸𝐷 = (𝑚 × 𝑡𝑖𝑚𝑒) + 𝑏 

 

 

Rule 10: Rate Equation Rule:  

[𝐸𝐷] = [𝐸𝐷0] + 𝑘𝑡 

Rule 11: Relative Change Per Av. Cell Rules:  

Total Surface from Total Units 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑀𝐷 × 𝑈𝑡𝑜𝑡𝑎𝑙 

Total Units from Total Surface 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐷 × 𝑆𝑡𝑜𝑡𝑎𝑙 

Rule 12: Absolute Change per Organ Rules: 

Total Surface from Total Units 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑀𝐷 × 𝑈𝑡𝑜𝑡𝑎𝑙 

Total Units from Total Surface 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐷 × 𝑆𝑡𝑜𝑡𝑎𝑙   

By providing access to three first principles and 

twelve of their derivative rules, biology makes 

its package of skills available to us along with 

key information: 

• Structure and function are inseparable – 

one maps mathematically to the other. 

• Well-defined relationships of structure to 

function define complexity, which defines 

biology. 

• Modules embed complexity within 

complexity - hierarchically and universally. 

• Linear models - based on ratios - serve to 

design and change phenotypes. 

Conjectures 

• Interpreting molecular events occurring in 

the genome will require mapping such 

activities to structural locations in the 

phenotype. 

• The “non-coding” portions of the DNA 

include many of the command and control 

codes for the phenotype.  
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EPILOGUE 
 

What did we learn?  Several basic lessons.  In 

attempting to solve biology, we had to address a 

string of challenging problems – one after the 

other.  Two things quickly became obvious.  

Most of the challenge was coming from the 

limitations imposed by our theory structure 

(reductionism) and by the restrictions built in to 

the way we report and store our research data 

(confined to articles published in journals).  

Curiously, biology shows no interest whatsoever 

in reductionism.  It runs its business as a 

complexity, which involves rules, parts, 

connections, and emergent properties – not just 

the parts we choose to collect and characterize 

after taking biology apart.  As a complexity, 

biology operates a big data, rule-based, and 

highly adaptive enterprise – one that excels at 

precision, accuracy, reproducibility, adaptability, 

and success.  

By any measure of reason, strategy, or 

resourcefulness, our one best chance of catching 

up to biology is to copy it.  This involves storing 

our research data in databases (to encourage 

data interaction), translating these data into 

universal formats (e.g., ratios, mathematical 

markers, connection ratios, equations), and 

using databases to generate parallel 

complexities (copies of biology).  This puts us on 

a path, as the primer explains, to emulate 

biology and thereby become more effective and 

astute problem solvers. 

By playing the rules game, we gain access to 

biology’s first-rate package of skills.  We now 

know how to generate and analyze complex 

biological patterns, to translate rules into 

equations, to diagnose and predict, and to verify 

reproducibility.  Moreover, by embracing a first 

principles approach, biology can begin to teach 

us the fundamentals of its theory structure.   

Why is it to our advantage to play by biology’s 

rules?  By redefining reproducibility in line with 

the way it operates in nature, for example, it 

reflects reality.  In fact, reproducibility defines – 

in a fundamental way – our approach to 

discovery by linking local to global such that the 

rule that applies to an individual also applies to 

the population.  One defines the other.  This tells 

us that data coming from a single paper can be 

as just as effective as large databases when 

looking for rules, solutions, and insights. 

Another implication exists.  When absolute 

values are not reproducible, ratios or equations 

derived therefrom most likely are.  Moreover, 

absolute data are not risk free.  Since they tend 

to be the products of “black boxes,” they lack 

the all-important transparency.  Although black 

box data allow us to demonstrate changes 

statistically, they tell us very little about the 

underlying mechanisms.  So, we opened these 

boxes, looked inside, and ferreted out the 

details.  Complexity theory provided the means 

and the mathematical framework.   

Such a task became trivial once we understood 

the relationship between biological variation and 

reproducibility.  This insight allowed us to verify 

the postulates of biological homogeneity with 

the structure-function rule (𝑓(𝑥) = 𝑚𝑥), which 

defines the relationship of structure to function 

as a core principle of biological design.  

Moreover, by simply adding a y intercept (b) to 

the structure-function rule (𝑓(𝑥) = 𝑚𝑥 + 𝑏) , it 

became possible to unfold the complexity of a 

biological change as it ripples across the 

biological hierarchy.  In effect, we captured 

biology’s genius for creating complexity with two 
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wonderfully simple equations.  Occam would 

approve.           

The first part of the proof for the biochemical 

homogeneity rule relied on data coming from 

three individual animals (biological variation) all 

of which displayed the same structure-function 

rule (reproducibility) as an R2 = 1 equation.  To 

pass through the origin – as specified by the rule 

– the membrane data required the section 

thickness corrections of Weibel and 

Paumgartner (1978).  Without these corrections, 

the equations miss the origin and consequently 

the rule (Bolender, 2018).  In turn, predictability 

and reproducibility combined to produce an 

effective strategy for validating these structure-

function equations.   

With access to both the key (the equation 

encapsulating the postulates of biochemical 

homogeneity) and the lock (biology’s rules 

expressed as equations), the door between 

complexity levels 1 and 2 opened wide, thereby 

allowing us to watch biology as it engineered a 

series of complex changes.   

Two papers (Weibel et al., 1969 and Stäubli et 

al., 1969) were ideally suited to the task of 

opening the mysterious black box of cell biology 

and showing us how multiple levels of 

complexity appear as hepatocytes responded to 

the drug phenobarbital.  As we watched, biology 

instigated changes with rule-based equations 

punctuated throughout by reproducibility.   

Since the approach to complexity used for 

hepatocytes is likely to apply to most if not all 

cell types, solving biology can proceed smoothly 

from one cell type to the next.  Rediscovering 

each cell type as a rule-based powerhouse will 

no doubt lead to a wealth of new and actionable 

information.  

Of course, the story we want biology to tell us is 

the big one, the one that reveals – 

mathematically - the relationship of genes to 

phenotypes to emergent properties.  Although 

we’ve only come as far as the phenotype, 

preliminary work suggests that moves into the 

genotype may require little more than 

translating or assembling molecular biology 

databases into parallel complexities.   

Complexity quickly becomes the theory of choice 

when we want to know the implications of 

making genetic changes, explaining the onset 

and progression of diseases, designing and 

testing new drugs, or improving the ability of a 

species to adapt to new environments.  No 

doubt, such stories - soon to be written - will 

make for good reading. 

We – all of us in the biology business – have 

been entrusted with two inestimable legacies, 

the periodic table of elements and the much 

larger table of genes.  Solving biology is just the 

first step in solving the relationship of one table 

to the other.  This synthesis has already begun 

and will define our future for many generations 

to come.  Our prospects have never been 

brighter.     

 

“Study nature, not books.” 

Louis Agassiz 

“… what I tell you three times is true.” 

Lewis Carroll 
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GLOSSARY 

 
ABSOLUTE DATA – Data expressed as a volume, 

surface, length, or number. 

ACCURACY – In conformity to truth, a rule, or 

standard; free from error or defect.  

ACID TEST – A conclusive test to establish the value 

or success of something.  

ALGORITHM – A step-by-step sequence of 

operations designed to perform a specific task. 

ALPHANUMERIC – A set (or string) of characters 

containing letters and numbers. 

ANALOGUE – One thing comparable to another. 

ARTIFACT – An object made by humans; a distortion 

produced by an investigative method. 

BACK-END – The server side as opposed to the 

working end (frontend). 

LAMBERT-BEER LAW – A method widely used to 

measure concentrations.   

𝑙𝑜𝑔10
𝐼0

𝐼
= 𝜖𝑙𝑐,  

where I0 is the intensity of the incident light, I the 

intensity of the emergent light,  the extinction 

coefficient, l the length of the light path, and c the 

concentration. 

BIAS – Identifies anything that produces systematic 

variation in research data; a systematic rather than a 

random distortion of a statistic.   

BIG DATA – Data sets too large to manipulate with 

traditional methods or tools. 

BIOLOGICAL VARIATION – normal differences within 

and between individuals due to differences in 

genetic, health, and environmental factors. 

BIOLOGICAL CHANGE – It defines a rule-based event 

that extends across at least six levels of complexity 

in the phenotype and includes genes, molecules, 

organelles, cells, organs, and organisms. 

BIOCHEMICAL DENSITY (BD) – A complex data type 

relating a biochemical constituent to a 

morphological component.   

BIOCHEMICAL HOMOGENEITY RULE – Defines the 

relationship of structure to function in living 

systems: 𝑓(𝑥) = 𝑚𝑥, where the slope (m) defines 

and enzyme density (ΔU/ΔS).  

BIOCHEMICAL DENSITY RULE – The BD rule defines 

the relationship of a biochemical constituent (b) to a 

morphological component (m): 𝐵𝐷 = 𝑏/𝑚.  

BLACK BOX – A construct involving a system wherein 

the inner components and logic are unavailable to 

the observer.   

BLUEPRINT – A detailed outline or plan of action; a 

design. 

BUBBLE – Identifies anything that lacks firmness, 

substance, or permanence; often an illusion or 

delusion.  In biology, they derive from faulty 

assumptions.   

BUTTERFLY – In chaos theory, the butterfly effect 

exemplifies the dependence of events on initial 

conditions; a small change can cause a large effect.  

For example, the turbulence created by a butterfly 

triggers a storm far away.   

CALCULATOR EQUATION – used to extract numerical 

data from graphs: 𝑦 𝑣𝑎𝑙𝑢𝑒 = (((𝑦_𝑡𝑜𝑝 ×

𝑦_𝑙𝑒𝑛𝑔𝑡ℎ)/ (𝑦_𝑢𝑛𝑖𝑡𝑠)) − 𝑦_𝑓𝑟𝑜𝑚_𝑡𝑜𝑝) × (𝑦_𝑡𝑜𝑝/

((𝑦_𝑡𝑜𝑝 × 𝑦_𝑙𝑒𝑛𝑔𝑡ℎ)/(𝑦_𝑢𝑛𝑖𝑡𝑠 )))) 

CHAOS THEORY – A branch of mathematics that 

deals with complex systems.  Such systems display 
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an underlying order, wherein very small events can 

trigger very complex outcomes. 

CLOUD – Provides centralized data storage and 

retrieval. 

CLUSTER ANALYSIS – The grouping of a set of items 

such that the members of same group (cluster) are 

closer related to each other than to those in other 

groups (clusters).  

COEFFICIENT OF DETERMINATION – A measure of 

the goodness of fit between dependent and 

independent variables in a regression analysis; 

abbreviated R2. 

COMMUNITYGRAPHPLOT – Identifies related 

communities (clusters) graphically. 

COMPLEX SYSTEMS – Composed of many connected 

parts.  They exhibit properties that emerge from the 

interaction of their parts, which usually cannot be 

predicted from the properties of the individual parts. 

COMPLEXITY THEORY – Complex behavior emerges 

from simple rules, producing large networks of 

interacting parts. 

COMPLEXITY LEVELS – Six levels begin the process of 

unfolding biological complexity into networks of 

interconnected equations. They include: Level 1 

(patterns & changes), Level 2 (biochemical 

homogeneity), Level 3 (change in organelle), Level 4 

(rate of change in organelles), Level 5 (change in 

cell), and Level 6 (changes in organ).   

CONCATENATE – Linking things together in a chain, 

string, or series. 

CONCENTRATION – The amount of a constituent (or 

component) divided by the total volume of the 

reference or containing space; expressed per unit 

volume.  Reference spaces can also include surface, 

length, and number.  The definition extends to 

biochemical densities expressed herein as enzyme 

and membrane densities. 

CONCENTRATION TRAP – Identifies a methodological 

bias that can occur when attempting to detect a 

biological change with concentration data.  While 

the volume of the reference compartment (the 

denominator) remains constant, the number of cells 

needed to fill the reference volume changes.  In 

effect, both the numerator and denominator can 

behave as variables.       

CONNECTION – Something that connects two or 

more things.  In biology, connections can be defined 

as ratios derived from the properties of the parts. 

CONNECTION PHENOTYPE -  Includes a set of parts 

(data pairs), plotted as a frequency distribution, and 

fitted to a polynomial regression.   

CONNECTION RATIO – A mathematical marker 

wherein the alpha names in the string are replaced 

by a single name (“part”); the numerical values of 

the ratio remain unaltered.  This extends the ability 

of the strings to detect quantitative patterns. 

COUNTING MOLECULES – A software package using 

simulators to explain the pitfalls of interpreting 

biological changes. 

CORRECTED CONCENTRATION EQUATION 

CORRECTED (CCC) - 𝐶𝐶𝐶(𝑡𝑖 ) =

𝐶(𝑡𝑖) 𝑥
𝑊𝐿(𝑡𝑖)−𝑊[𝐸𝐻𝑆(𝑡0)]

𝑊𝐿(𝑡0)−𝑊[𝐸𝐻𝑆(𝑡0)]
  , where 𝐶𝐶𝐶(𝑡𝑖 ) is the 

corrected concentration at time 𝑖, 𝐶(𝑡𝑖) the 

uncorrected concentration at time 𝑖, 𝑊𝐿(𝑡𝑖) the 

weight of the liver at times i and 0, and 𝑊[𝐸𝐻𝑆(𝑡0)] 

the weight of the extrahepatocytic space (EHS) at 

time 0 (𝑡0).  The equation assumes that the EHS 

remains constant throughout the experiment.   

DATA PAIR – A ratio of two numerical values, which 

may include the names of the parts. 

DATA PAIR RULE – A quantitative relationship 

defined by two parts (A, B) and one connection (X:Y): 

AX:BY). 

DATA STRINGS – A complex data type based on 

alphanumeric coding; a universal data type used in 

diagnosis and for detecting patterns and 

reproducibility.   
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DATABASE – A structured set of data held in a 

computer that can be accessed, managed, and 

updated. 

DATA CAGE - A boundary condition imposed by the 

design of a parallel complexity capable of optimizing 

outcomes.  Such closed systems, for example, were 

found to be 100% effective for diagnosing disorders 

of the brain.  Moreover, a data set contained within 

such a cage becomes predictive when allowed to 

interact with outside data.      

DATA-DRIVEN – Progress propelled by data, rather 

than by methods. 

DECIMAL REPERTOIRE EQUATION – The values of a 

repertoire equation fitted to decimal steps. 

DENSITY – A term used in stereology to describe a 

concentration. 

DESCRIPTIVE BIOLOGY – A qualitative approach to 

biology. 

DESIGN-BASED SAMPLING – Sampling independent 

of size, shape, orientation, and distribution; 

sampling bias is minimized.  Every part of the 

structure has the same chance of being sampled. 

DIAGNOSE – Identify a normal or abnormal state 

usually by examining symptoms.   

DIAGNOSIS DATABASES: Usually based on triplets, 

these databases use unique or duplicate markers.  

They are expected to play a key role in explaining 

how the genome orchestrates phenotypic changes.     

DESIGN CODES – Include ratios formed by dividing 

experimental by control values.  They identify 

patterns of change.  

DESIGN CODE EQUATIONS – Include the use of 

regression analysis to look for linear patterns in 

biological data.  Such patterns suggest the presence 

of underlying rules. 

DISEASE – A disorder of structure or function, often 

producing specific signs and symptoms. 

DISECTOR – A design-based method of stereology 

that uses an unbiased sampling frame to estimate 

the numerical density (N/V) of particles. 

DISORDER – A malady or dysfunction; a state of 

confusion. 

DISRUPTION – To break apart or alter, thereby 

preventing the existence of a normal. 

DISTORTED – Not representing the facts or reality; 

misrepresenting; false. 

DUPLICATE – One of two or more identical things. 

EMERGENT PROPERTY – Connected parts display 

new properties equal to more than those of the 

individual parts; the whole is greater than the sum of 

the parts; properties irreducible to the constituent 

parts. 

EMPIRICAL – Identifies outcomes based on testing or 

experience rather than on theory.  

ENCAPSULATE – Enclose; contain. 

ENTERPRISE – A project, one that is difficult or 

requires considerable effort. 

ENTERPRISE BIOLOGY SOFTWARE PROJECT (EBSP) – 

A project designed specifically to speed learning and 

discovery in the life sciences 

(enterprisebiology.com). 

ENZYME DENSITY (ED) – A ratio (U/S) defining the 

relationship of an enzyme activity (U) to a 

morphological reference (usually a surface area (S)).  

It provides the amount of activity associated with 1 

m2 of membrane surface area. 

ENZYME DENSITY RULE: An example of the 

biochemical homogeneity rule, it defines a 

quantitative relationship that exists between units of 

marker enzyme activity (U) and 1 m2 of membrane 

surface area (S): 𝐸𝐷 = 𝑈/𝑆. 

EQUATION – An expression stating that two things 

are equal. 

ERROR – A deviation from accuracy or correctness. 
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EXPERIMENT – A scientific procedure designed to 

discover, test a hypothesis, or demonstrate a known 

fact. 

EXPONENT – The power to which a given number or 

expression is to be raised. 

FALSE NEGATIVE – Indicates mistakenly that 

something tested for is absent when it is present. 

FALSE POSITIVE – Indicates mistakenly that 

something tested for is present when it is not. 

FILTER – A device designed to remove specific 

components. 

FIRST PRINCIPLE: A first principle can be a law upon 

which others are founded or from which others are 

derived.  It is a general truth, comprehending many 

subordinate truths, but not deductible from others. 

FOLD – To place together and entwine; to blend 

components; to bring from extended to compact. 

FRACTIONATOR – A design-based method of 

stereology used for estimating particle counts; based 

on the disector; a systematic random sampling 

method. 

FRONT-END – User interface; the part of a software 

program with which the user interacts. 

GAME – structured playing; a form of sport or play; 

played according to rules and decided by skill, 

strength, or luck. 

GENERALIZATION – A general statement, law, 

principle, or proposition. 

GENOTYPE – Genetic constitution of an individual. 

GLOBAL – Involving all of something. 

GOLD STANDARD – The example by which others are 

judged or measured.   

HIERARCHY – A series of ordered groupings. 

HOMOGENATE – Biological tissue ground up and 

mixed; mechanically disrupted. 

IBVD – Internet Brain Volume Database; MRI data 

expressed as volumes.  

INTACT TISSUE – Undamaged; unaltered. 

JOIN – Cause to become joined or linked, as in 

database tables. 

LADDER EQUATION – An exponential equation 

summarizing a set of rung (power) equations. 

MASHUP – A method for discovering new types of 

information by combining data from one or more 

sources.    

MATHEMATICA – A computational software 

program; Wolfram Research, Champaign, Ill. 

MATHEMATICAL CORE – Used herein to identify the 

quantitative rules to which biology adheres. 

MATHEMATICAL MAPPING – An element of a given 

set associated with an element of another set. 

MATHEMATICAL MARKER – An alphanumeric string 

designed to captures units of complexity specific to a 

given phenotypic state. 

MEMBRANE DENSITY (MD) – A ratio (S/U) defining 

the amount of membrane surface area (S) 

supporting one unit (U) of enzyme activity.    

MEMBRANE DENSITY RULE - An example of the 

biochemical homogeneity rule, it defines a 

quantitative relationship that exists between 1 m2 of 

membrane surface area (S) and units of marker 

enzyme activity (U): 𝑀𝐷 = 𝑆/𝑈. 

METHODS-DRIVEN – An activity compelled by 

methods. 

NESTED COMPLEXITY – Complexity embedded in 

complexity.  Unfolding and refolding nested 

complexity represents a major undertaking of 

complexity theory.  The process consists of 

translating data sets into mathematical markers, 

storing them in a universal biology database, and 

applying filtering algorithms.     

NETWORK – A system of interconnected parts. 
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OBJECTIVE – Not influenced by personal feelings or 

opinions; identified with quantitative approaches. 

OPTICAL DENSITY – A measure of the extent to 

which a substance transmits light or other 

electromagnetic radiation.   

ORGANISM CODES – Identify patterns of connectivity 

in each paper graphically. 

PARALLEL COMPLEXITY – A collection of 

mathematical markers serving as a proxy for biology; 

a construct designed with a specific goal in mind 

(e.g., diagnosis).  It serves as a copy of biology.   

PATTERN – A repeated design; an arrangement or 

sequence; things arranged by rule. 

PERMUTATION – The way in which a set of numbers 

or things can be ordered. 

PHENOTYPE – The physical appearance of an 

organism.  It represents the downstream expression 

of a genetic code, represented by the observable 

characteristics of an organism such as morphology, 

biochemistry, physiology, or behavior. 

PHENOTYPIC DATA – Genetic expression detected 

herein, for example, as mathematical markers, 

connection rations, rules, and equations. 

PLAYING FIELD – A database platform for playing 

complexity games with properties specified 

according to the game’s rules; a field designed to 

solve a specific problem. 

POLYNOMIAL EQUATION – An algebraic equation 

wherein one or both sides take the form of a 

polynomial. 

POSTMORTEM – After death. 

POWERBUILDER – An integrated development 

environment distributed by Sybase, Inc. (Emeryville, 

CA). 

PRECISION – The extent to which a given set of 

estimates of the same sample agree with the mean 

value.    

PREDICT – To tell in advance, using, for example, 

inference or special information. 

PROPORTION – A relationship among parts with 

respect to their comparative quantity. 

PROXY – A substitute for another. 

QUADRUPLET MARKER – A mathematical marker 

consisting of four alpha and four numeric 

components; expressed as a numerical ratio. 

QUADRUPLET RULE – A mathematical marker 

(expressed as decimal values): AXBYCZDQ. 

QUALITATIVE – Distinctions based on qualities. 

QUANTITATIVE – Expressible as a quantity; 

susceptible to measurement. 

QUERY BY EXAMPLE (QBE) – Query by example; a 

database query based on the items selected. 

R2 = 1 EQUATIONS – Used to translate complex data 

and rules into equations.  

RATE EQUATIONS – Defines the speed at which a 

concentration is changing.     

RATE EQUATION RULE – A chemistry rule ([𝐴] =

[𝐴]0 ± 𝑘𝑡) adapted to biology ([𝐸𝐷] = [𝐸𝐷]0 ± 𝑘𝑡), 

wherein enzyme densities become the 

concentrations. 

RATIO – Relative magnitudes of two or more 

quantities. 

RATIO CHAIN RULE – A rule that applies to both 

morphology (𝑚1: 𝑚2: 𝑚3, … , 𝑚𝑛) and biochemistry 

(𝑏1: 𝑏2: 𝑏3, … , 𝑏𝑛).  

RECIPE DETECTION RULE – A rule that can be applied 

during the transitional state of a biological change to 

detect the appearance of a new recipe – expressed 

as an alphanumeric string of parts and connections.  

RECIPE RULE:  An alphanumeric string of enzyme 

densities (expressed as ratios) identifies the 

phenotypic code defined by gene expression.  Such 

codes map back to specific genes and to yet 

unidentified portions of the DNA.      
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REDUCTIONIST THEORY – Assumes that complex 

systems can be understood in terms of their 

individual parts. 

REGRESSION EQUATION – The relationship between 

values X and Y from which the most probable value 

of Y can be predicted from X. 

RELATIONSHIPS OF STRUCTURE TO FUNCTION – Play 

a key role in defining biological complexity.  They 

express rules that can be captured with equations.  

RELATIVE AND ABSOLUTE CHANGE RULES:  These 

structure-function rules monitor changes indexed to 

total cell and organ changes. 

REPERTOIRE EQUATION – Defines the quantitative 

relationship of values X to Y, wherein both the slope 

and the R2 of a power curve approach one.  A 

repertoire equation identifies a relationship defined 

by data published in the biology literature. 

REPRESENTATIVE SAMPLE – A population that 

accurately reflects the members of the entire 

population. 

REPRODUCIBILITY – to produce again; to duplicate. 

REPRODUCIBILITY (STANDARD DEFINITION) – An 

ability to repeat the results of an experiment either 

by the same researcher or by an independent one. 

REPRODUCIBILITY (UPDATED DEFINITION) - An ability 

to duplicate a biological complexity with little or no 

biological variation. 

ROSETTE – a visual representation of complexity, 

consisting of a central point (connection ratio) 

connected by lines (forming a petal) to a 

mathematical marker.  It serves as a Level 1 test of 

reproducibility for large data sets.  

RULE-BASED – A production system based on rules 

for storing, manipulating, and interpreting 

information in a useful way.  

RUNG EQUATION – Data fitted to a power curve 

displaying an R2 approaching one. 

SCALE – To change a process to allow for greater or 

lesser quantities; increase or decrease 

proportionately. 

SCATTERPLOT – A haphazard distribution of data; 

bivariate data expressed as a set of scattered points. 

SCIENCE – Extends knowledge of principles and 

causes. 

SEMIQUANTITATIVE – Partially quantitative and 

partially qualitative; approximating a quantitative 

value. 

SHRINKAGE – The amount by which something 

decreased in amount, often a volume; a reduction in 

value. 

SIGNIFICANT DIFFERENCE – A measure of the 

likelihood of drawing a false conclusion in a 

statistical test; too closely correlated to be 

attributed to chance alone; implies a measurable 

difference between two groups wherein the 

probability of obtaining that difference by chance is 

very small (e.g., <0.05; <5%). 

SIMPLE – Having few parts; not complex or 

complicated. 

SIMULTANEOUS EQUATIONS – Includes a method for 

finding solutions based on the intersection of two 

linear equations.  It offers a way of finding unknown 

enzyme densities.    

SIMULATION – Act of imitating the behavior of some 

situation or process; to create a representation or 

model. 

STANDARDIZE – To conform to a representative 

process or norm. 

STANDARD – A basis for comparison. 

STEADY STATE RULE – Identifies a biochemical 

homogeneity expressed as an enzyme or membrane 

density: 𝑓(𝑥) = 𝑚𝑥, where the slope (m) is the 

density. 
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STEREOLOGY – A collection of mathematical 

methods for estimating 2D and 3D structures 

quantitatively from lower dimensions. 

STEREOLOGY LITERATURE DATABASE (SLD) – 

published research data stored in a relational 

database. 

STOICHIOMETRY – Relationships existing as a ratio of 

small integers. 

STRUCTURE-FUNCTION RULE (BIOCEMICAL 

HOMOGENEITY RULE) – Defines a quantitative 

relationship between structure and function (𝑓(𝑥) =

𝑚𝑥), where m is the slope of the curve passing 

through the origin.  It represents a principle 

fundamental to the design and operation of biology.  

It defines enzyme and membrane densities.   

STRUCTURE-FUNCTION CHANGE RULE – Identifies a 

biological change as a relationship of structure to 

function: 𝑓(𝑥) = 𝑚𝑥 + 𝑏 .  It is the product of 

several individual biochemical homogeneity (i.e., 

enzyme density) rules: 𝑓(𝑥) = 𝑚𝑥 . 

SUBJECTIVE – Coming more from the observer than 

from observations. 

SWELLING – An increase in volume. 

SYMPTOM – Indicates the presence of something, 

especially something undesirable. 

SYNDROME – A pattern of symptoms indicative of a 

disease. 

SYSTEM – A group of independent, but interrelated 

elements producing a unified whole. 

TEMPLATE – A guide for making other objects. 

THEORETICAL – Concerned with theories, rather 

than practical applications. 

THEORY – A well-substantiated explanation of some 

aspect of the natural world. 

TRADITIONAL – Time-honored orthodox doctrines; 

widely accepted. 

TRANSITIONAL STATE (Change) – Defined by the 

structure-function rules, it identifies a period of time 

when a biological change occurs.    

TRIPLET MARKER - A mathematical marker consisting 

of three alpha and three numeric components; 

expressed as a numerical ratio. 

TRIPLET RULE - A mathematical marker (expressed as 

decimal values): AXBYCZ. 

TRIPLET DATABASES – Populated with mathematical 

markers (AXBYCZ), these databases serve to identify 

patterns in large data sets.   

UNBIASED – When bias equals zero; lack of 

systematic error. 

UNBIASED DATA – When bias equals zero for the 

method of sampling and the material sampled.   

UNBIASED SAMPLING – A method designed to 

remove bias from the sampling procedure; design-

based sampling.   

UNFOLD – Open out; to reveal or display; lay open to 

view. 

UNIQUE – One of a kind. 

UNIT – A standard of measurement; appended to a 

value. 

UNIVERSAL BIOLOGY DATABASE – Contains 

biological data expressed as ratios; a unified data set 

derived from the biology literature. 

UNIVERSAL STANDARDS – Identifies a best practices 

approach to biological research.  They include 

universal biology databases, universal connectors, 

universal references for morphology and 

biochemistry, and universal gold standards.  

UNSTABLE – Lacking stability; affords no assurance; 

subject to change, variable, unpredictable, 

ambiguous. 

VALENCE – An ability of a given part to connect to 

the same part in different ratios. 

VALUE – A numerical quantity. 
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VARIABLE – A quantity that can assume different 

values. 

WEIBEL-PAUMGARTNER CORRECTION – Corrects 

stereological estimates for the biases produced by 

section thickness.  Stereological estimates assume 

that the sections used to collect data have no 

thickness. 

WIN-WIN – An outcome beneficial to all parties 

involved. 

ZEROTH-ORDER REACTION:  Defines a linear 

equation ([𝐴] = [𝐴]0 ± 𝑘𝑡), where [A] is the 

concentration a given time, [A]0 the concentration at 

time 0, k the rate constant, and t the given time. 
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